#### حل التمرين 1

- 1 يتعلق مفعول قوة على دوران جسم بعاملين اثنين هما شدة هذه القوة و المسافة بين خط تأثيرها و محور الدوران.
  - $F = m \cdot g$  باعتبار توازن الكتلة المعلمة لدينا العلاقة:  $\mathbf{2}$

| $F \cdot d(N \cdot m)$ | d (m) | F(N)  | التجربة |
|------------------------|-------|-------|---------|
| 0,014 7                | 0,060 | 0,245 | 1       |
| 0,014 7                | 0,030 | 0,490 | 2       |
| 0,014 7                | 0,015 | 0,980 | 3       |

- . الجداء  $F\cdot d$  ثابت.
- 4 عزم قوة مطبقة على جسم صلب قابل للدوران حوك محور ثابت و متعامد مع خط تأثيرها يساوي جداء شدتها و المسافة الفاصلة بين خط تأثيرها و محور الدوران.

## حل التمرين 2

1 - حرد حميع القوى المطبقة على الصفيحة

،  $m_1$ تخضع الصفيحة لأربع قوى: $ec{P}$  وزنها ،  $ec{R}$  تأثير المحور ( $ec{E}$  تأثير الخيط المرتبط بالكتلة المعلمة وتخضع الصفيحة لأربع قوى: $ec{R}$  وزنها ،  $ec{R}$  تأثير الحيط المرتبط بالكتلة المعلمة وتخصص المحدد الم

.  $m_2$  و  $ec{F}_2$  تأثير الخيط المرتبط بالكتلة المعلمة

2 - عزوم هذه القوى بالنسبية لمحور الدوران

$$M_{\Delta}\left(\overrightarrow{P}\right)=M_{\Delta}\left(\overrightarrow{R}\right)=0$$
 خطا تأثیر  $\overrightarrow{P}$  و  $\overrightarrow{P}$  يتقاطعان مع محور الدوران ( $\Delta$ ): عزماهما منعدمان:

$$M_{\Delta}\left(\overrightarrow{F}_{2}\right) = -F_{2} \cdot d_{2} = -m_{2} \cdot g \cdot d_{2} \quad 9 \quad M_{\Delta}\left(\overrightarrow{F}_{1}\right) = +F_{1} \cdot d_{1} = +m_{1} \cdot g \cdot d_{1}$$

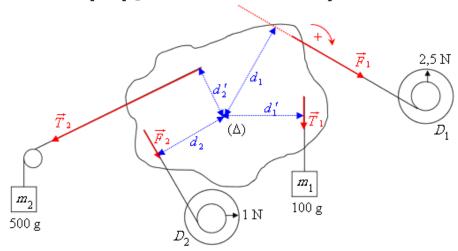
$$M_{\Delta}(\vec{F}_1) = +100 \times 10^{-3} \times 9,8 \times 2,0 \times 10^{-2} = +1,96.10^{-2} N.m$$

$$M_{\Delta}(\vec{F}_2) = -200 \times 10^{-3} \times 9,8 \times 1,0 \times 10^{-2} = -1,96.10^{-2} N.m$$

 $M_{\Delta}\left(\overrightarrow{F}\right)+M_{\Delta}\left(\overrightarrow{R}\right)+M_{\Delta}\left(\overrightarrow{F}_{1}\right)+M_{\Delta}\left(\overrightarrow{F}_{2}\right)=0$  نستنتج المجموع الجبري لعزوم القوى:

3 - <u>شيرط توازن حسيم صلب قابل للدوران حول محور ثابت (ميرهنة العزوم)</u> في حالة توازن جسيم صلب قابل للدوران حول م<mark>حور ثابت، المج</mark>موع الجبري لعزوم كل القوى المطبقة عليه منعد،

$$\sum M_{A}(\overrightarrow{F}) = 0$$


### حل التمرين 3

## 1 - حرد حميع القوى المطبقة على الصفيحة

تخضع الصفيحة لسبت قوى:ec F وزنها ، ec R تأثير المحور (ec L تأثير الخيط المرتبط بالدينامومتر الخيط المرتبط بالكتلة ec T تأثير الخيط المرتبط بالكتلة المعلمة  $ec F_2$  ،  $ec T_3$  تأثير الخيط المرتبط بالكتلة المعلمة  $ec T_2$  ،  $ec T_3$  تأثير الخيط المرتبط بالكتلة المعلمة ع $ec m_2$  .

 $1 \, cm \leftrightarrow 1 \, N$ م - يمثيل متحهات القوى المقرونة بتأثيرات الخيوط على الصفيحة باستعمال السلم المسام  $m \leftrightarrow 1 \, N$  شداتها هي:

$$T_1 = m_1 \cdot g = 100 \times 10^{-3} \times 10 = 1,0 \ N$$
  $F_1 = 2,5 \ N$   
 $T_2 = m_2 \cdot g = 500 \times 10^{-3} \times 10 = 5,0 \ N$   $F_2 = 1,0 \ N$ 



## 3 - عزوم هذه القوى بالنسبة لمجور الدوران

المسافات الفاصلة بين خطوط تأثير القوى و محور الدوران:

$$d_1' = 2,4 cm$$
  $d_1 = 3,1 cm$   
 $d_2' = 1,6 cm$   $d_2 = 2,3 cm$ 

• عزوم القوى بالنسبة لمحور الدوران:

$$M_{\Delta}(\vec{F}_1) = +F_1 \cdot d_1 = +7,75.10^{-2} \ N \ m$$

$$M_{\Delta}(\vec{F}_2) = -F_2 \cdot d_2 = -2,3.10^{-2} \ N \ m$$

$$M_{\Delta}(\vec{T}_1) = +T_1 \cdot d_1' = +2,4.10^{-2} \ N \ m$$

$$M_{\Delta}(\vec{T}_2) = -T_2 \cdot d_2' = -8,0.10^{-2} \ N \ m$$

#### 4 - المحموع الحيري لعزوم القوي

 $M_{\Delta}\left(\overrightarrow{P}\right)=M_{\Delta}\left(\overrightarrow{R}\right)=0$  خطا تأثیر  $\overrightarrow{P}$  و  $\overrightarrow{P}$  يتقاطعان مع محور الدوران ( $\Delta$ ): عزماهما منعدمان:  $\overrightarrow{R}$  و  $\overrightarrow{P}$  بنستنتج المجموع الجبري لعزوم القوى:

$$M_{\perp}(\vec{F}) + M_{\perp}(\vec{F}) + M_{\perp}(\vec{F}_1) + M_{\perp}(\vec{F}_2) + M_{\perp}(\vec{T}_1) + M_{\perp}(\vec{T}_2) = -0.0015 \approx 0$$
  
 $N_{\perp}(\vec{F}) + M_{\perp}(\vec{T}_2) + M_{\perp}(\vec{T}_2) + M_{\perp}(\vec{T}_2) = 0.0015 \approx 0$ 

## حل التمرين 4

1 - <u>حرد حميع القوى المطبقة على العارض</u>ة

، ( $\Delta$ ) وزنها (مهمل) ، تأثير القوة  $ec{T}$  ،  $ec{F}$  تأثير النابض و  $ec{P}$  تأثير المحور ( $\Delta$ ) ، تخضع العارضة لأربع قوى:

2 - شيدة القوة التي يطبقها النابض على العارضة

بتطبيق مبرهنة العزوم بالنسبة لمحور الدوران (Δ) ، لدينا:

$$\boldsymbol{M}_{\scriptscriptstyle{A}}\left(\overrightarrow{F}\right)\!+\!\boldsymbol{M}_{\scriptscriptstyle{A}}\left(\overrightarrow{T}\right)\!+\!\boldsymbol{M}_{\scriptscriptstyle{A}}\left(\overrightarrow{R}\right)\!=0$$

 $(\Delta)$  لأن خط تأثير  $\overrightarrow{R}$  يتقاطع مع محور الدوران  $M_{\Delta}(\overrightarrow{R}) = 0$ 

$$M_{\Delta}(\overrightarrow{F}) = +F \cdot OH = +F \cdot OA \cdot \sin \alpha$$

$$M_{\Delta}(\overrightarrow{T}) = -T \cdot OC = -T \cdot \frac{OA}{2}$$

$$F \cdot OA \cdot \sin \alpha - T \cdot \frac{OA}{2} = 0$$
 نعوض و نستنتج:

$$T = 2F \cdot \sin \alpha$$

$$T = 2 \times 20 \times \sin 30^{\circ} = 20 N$$



1 - شدة القوة ( $(A, ec{F}')$  التي تطبقها العتلة على المسمار - -

بإهمال وزنها تخضع العتلة لثلاث قوى:  $(B, \overrightarrow{F})$  و  $(O, \overrightarrow{R})$  و  $(A, \overrightarrow{F})$  تأثير المسمار على العتلة.

. حسب مبدأ التأثيرات البينيةF''=F''

بتطبيق مبرهنة العزوم بالنسبة لمحور الدوران (Δ) ، لدينا:

$$M_{\Delta}(\overrightarrow{F}) + M_{\Delta}(\overrightarrow{R}) + M_{\Delta}(\overrightarrow{F}'') = 0$$

 $(\Delta)$  لأن خط تأثير  $\overrightarrow{R}$  يتقاطع مع محور الدوران  $M_{\Delta}\left(\overrightarrow{R}\right)=0$ 

$$M_{A}(\overrightarrow{F}) = +F \cdot OB$$

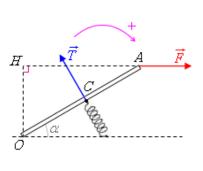
$$M_{\Delta}(\overrightarrow{F}'') = -F'' OH = -F' OA \cdot \sin \alpha$$

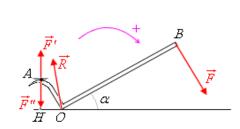
$$F' = F \cdot \frac{OB}{OA \cdot \sin \alpha}$$

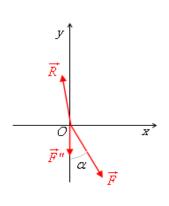
2 - <u>شدة القوة (O,R</u>) <u>التي بطبقها سطح التماس على العتل</u>ة

$$\vec{F} + \vec{R} + \vec{F}'' = \vec{0}$$
 بتطبيق الشرط الآخر للتوازن، لدينا:  $(C, r, r)$ 

$$\begin{vmatrix} -F \cdot \sin \alpha + R_x + 0 = 0 \\ -F \cdot \cos \alpha + R_y - F'' = 0 \end{vmatrix} \leftarrow \begin{vmatrix} F_x + R_x + F_x & " = 0 \\ F_y + R_y + F_y & " = 0 \end{vmatrix}$$

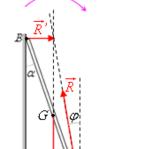

$$egin{aligned} R_{\rm x} &= F \cdot \sin lpha \ R_{
m y} &= F \cdot \cos lpha + F \ \end{array} : ({\cal O}\,, \overrightarrow{R}\,)$$
 و نستنتج إحداثيتي القوة


$$R = \sqrt{{R_x}^2 + {R_y}^2}$$
 و شدتها هي: 
$$R = \sqrt{{(F \cdot \sin \alpha)}^2 + {(F \cdot \cos \alpha + F')}^2}$$


$$R = \sqrt{(F \cdot \sin \alpha)^2 + (F \cdot \cos \alpha + F)^2}$$

<u>ت.ع</u>.

$$R = \sqrt{(200 \times \sin 30^\circ)^2 + (200 \times \cos 30^\circ + 2800)^2} = 2975 \, N$$








## حل التمرين6

<u>ت.ع</u>.



#### 1 - حرد القوى المطبقة على AB و تمثيل متحهاتها

يخضع السلم لثلاث قوى هي: وزنه  $ec{P}$  و تأثير السطح الأفقي  $ec{R}$  و تأثير الجدار الرأسي  $ec{R}$  .  $ec{P}$ خطوط تأثير القوى تتلاقى في نقطة تقاطع خط تأثير (العمودي المار من G) و خط تأثير  $\overrightarrow{R}$  (الأفقى المار من B).

#### 2 - شيدة القوة المطبقة من طرف الحدار

 $M_{\Delta}\left(\overrightarrow{P}\right)+M_{\Delta}\left(\overrightarrow{R}\right)+M_{\Delta}\left(\overrightarrow{R}'\right)=0$  الدينا:  $\Delta$  الدينا: مبرهنة العزوم بالنسبة لمحور الدوران ( $\Delta$ ) ، لدينا: (۵) لأن خط تأثير  $\overrightarrow{R}$  يتقاطع مع محور الدوران  $M_{\Delta}\left(\overrightarrow{R}\right)=0$ 

$$M_{\Delta}(\overrightarrow{P}) = -P \cdot \frac{AB}{2} \cdot \sin \alpha$$

$$M_{\Delta}(\overrightarrow{R}) = +R \cdot AB \cdot \cos \alpha$$

 $-P \cdot \frac{AB}{2} \cdot \sin \alpha + R \cdot AB \cdot \cos \alpha = 0$  نعوض و نستنتج:

$$R' = \frac{P}{2} \cdot \tan \alpha \qquad \leftarrow$$

$$R' = \frac{40}{2} \times 0,15 = 3 N$$

arphi <u>شدة القوة التي بطبقها السطح الأفقي و قيمة الزاوي</u>ة -3

الخط المضلعي لمتجهات القوى مثلث قائم الزاوية. 
$$R = \sqrt{P^2 + R^{-12}}$$
 لدينا العلاقة:  $R = \sqrt{40^2 + 3^2} \approx \frac{40 N}{2}$ 

$$=\sqrt{40^2+3^2} \approx 40 \ M$$

$$\tan \varphi = \frac{R'}{P}$$
 tan  $\varphi = \frac{R'}{P}$ 

$$\tan \varphi = \frac{1}{2} \cdot \tan \alpha$$
 و باعتبار العلاقة السابقة:

$$\varphi = 4,3^{\circ} \leftarrow \tan \varphi = 0,075$$

4 - <u>القيمة النهائية "a للزاوية م دون أن يفقد السلم توازن</u>ه

لكي يبقى السلم في حالة التوازن، يجب أن يتحقق الشرط التالي: tan φ≤ tan φ<sub>h</sub>

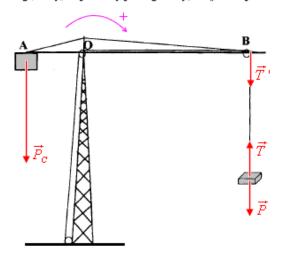
$$\frac{1}{2} \tan \alpha \leq \tan \alpha_0 \qquad \leftarrow$$

$$\tan \alpha_m = 2 \tan \alpha_0 \qquad \leftarrow$$

$$\alpha_m = 26,6^\circ \qquad \cot \alpha_m = 0,50$$

$$\frac{2}{2} \tan \alpha_m = 0.50$$




#### 1 - شدة توتر الحيل

 $\overrightarrow{T}$  .  $\overrightarrow{T}$  الحبل  $\overrightarrow{P}$  و تأثير الحبل  $\overrightarrow{T}$  .  $\overrightarrow{T}$  عضع الحمولة لقوتين هما وزنها  $\overrightarrow{P}$   $+\overrightarrow{T}$  =  $\overrightarrow{0}$ 

 $T = 1500 \times 10 = 15000 N$  ق.ع.

2 - حرد القوى المطبقة على الرافعة

 $\overrightarrow{R}$  الموازن $\overrightarrow{P}$  و تأثير النعم الرافعة لثلاث قوى هي تأثير الثقل الموازن $\overrightarrow{P}$  و تأثير الحبل  $\overrightarrow{T}$  و تأثير سطح



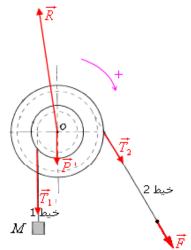
### 3 - كتلة الثقل الموازن

 $M_{\Delta}\left(\overrightarrow{P}_{C}\right)+M_{\Delta}\left(\overrightarrow{R}\right)+M_{\Delta}\left(\overrightarrow{T}'\right)=0$  الدينا: O لدينا: مبرهنة العزوم بالنسبة لمحور مار من O لدينا:

لأن خط تأثير 
$$\overrightarrow{R}$$
 يتقاطع مع المحور  $M_{\Delta}\left(\overrightarrow{R}\right)=0$ 

$$M_{\Delta}(\overrightarrow{P}_C) = -M_C \cdot g \cdot OA$$

لأن ' T=T حسب مبدأ التأثيرات البينية  $M_{\Delta}\left(\overrightarrow{T}'\right)=+T'\cdot OB=+T\cdot OB$  نعوض و نستنتج:  $M_{C}\cdot g\cdot OA+T\cdot OB=0$ 


$$M_C = \frac{T}{g} \cdot \frac{OB}{OA}$$
  $\leftarrow$ 

$$M_C = \frac{T}{g} \cdot \frac{OB}{OA} \qquad \leftarrow$$

$$M_C = \frac{15\ 000}{10} \times \frac{10}{3} = 5\ 000\ kg \qquad .2.0$$

## حل التمرين 8

 $\vec{T}$  - حرد القوى المطبقة على البكرة تخضع البكرة  $\vec{T}$  و تأثير محورها  $\vec{T}$  و تأثير الحبل  $\vec{T}$  ، و تأثير الحبل  $\vec{T}$  ،  $\vec{T}$  و تأثير محورها الحبل العبل ا



## ي توازن $\vec{F}$ يكي تكون البكرة في توازن -2

 $M_{\Delta}\left(\overrightarrow{P}'\right) + M_{\Delta}\left(\overrightarrow{R}\right) + M_{\Delta}\left(\overrightarrow{T}_{1}\right) + M_{\Delta}\left(\overrightarrow{T}_{2}\right) = 0$  riduid in the first state of t

لأن خطي تأثيرهما يتقاطعان مع المحور 
$$M_{\,\vartriangle}\left(\overrightarrow{P}^{\,\prime}\right)=M_{\,\vartriangle}\left(\overrightarrow{R}^{\,\prime}\right)=0$$

تأثيرات البينية و مبدأ التأثيرات البينية  $T_1=P$  لأن  $M_{\Delta}\left(\overrightarrow{T}_1\right)=-T_1\cdot r=-P\cdot r$ 

لأن 
$$T_2=F$$
 لأن  $M_{\Delta}\left(\overrightarrow{T}_2\right)=+T_2\cdot R=+F\cdot R$  لأن

$$-P \cdot r + F \cdot R = 0$$

نعوض و نستنتج:

$$F = P \cdot \frac{r}{R}$$

$$F = 500 \times \frac{5}{10} = 250 \text{ N}$$

$$F = 500 \times \frac{5}{10} = 250 \ N$$

<u>ت.ع</u>.

يمكن هذا التركيب من رفع حمولة بمجهود أدني.

### حل التمرين 9

1 - <u>كتلة الثقل الموازن</u> - ندرس توازن العاتق بدون حمولة:

ردرس توازن العاتق بدون حمولة:

$$\overrightarrow{R}$$
 ندرس توازن العاتق بدون حمولة:

 $\overrightarrow{R}$  بوزن الثقل الموازن  $\overrightarrow{p}$  و تأثير المحور  $\overrightarrow{R}$  و تأثير المحور  $\overrightarrow{R}$  تطبيق مبرهنة العزوم:

 $M_{\Delta}\left(\overrightarrow{P_0}\right) + M_{\Delta}\left(\overrightarrow{P}\right) + M_{\Delta}\left(\overrightarrow{R}\right) = 0$ 
 $\rightarrow p$ 
 $\rightarrow p$ 

(1)

 $-P_0 \cdot DG + p \cdot DO = 0$ 
 $\rightarrow p$ 

- ندرس توازن العاتق مع الحمولة:

$$(1) -P_0 \cdot DG + p \cdot DO = 0 \leftarrow$$

- ندرس توازن العاتق مع الحمولة:

 $\overrightarrow{P}$  يخضُع العاَّتيَ لأربع قوى وزنه  $\overrightarrow{P_0}$  ، وزن الثقل الموازن  $\overrightarrow{p}$  ، تأثير المحور  $\overrightarrow{R}$  و وزن الحمولة

(2) 
$$-P_0 \cdot DG + p \cdot DC - P \cdot DA = 0$$
  $\leftarrow$ 

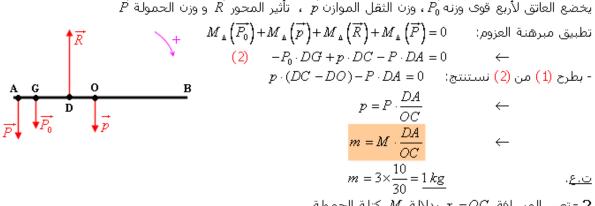
$$p = P \cdot \frac{DA}{OC} \qquad \leftarrow$$

$$m = M \cdot \frac{DA}{CC}$$

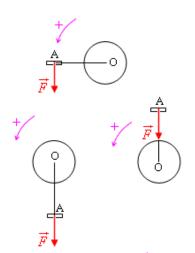
$$m = 3 \times \frac{10}{30} = 1 \, kg \qquad \qquad \underline{s} = 0.$$

$$30$$
 ---  $30$  ---  $30$  ---  $30$  ---  $30$  ---  $30$  ---  $30$  ---  $30$  ---  $30$  ---  $30$  ---  $30$  ---  $30$  ---  $30$  ---  $30$  ---  $30$  ---  $30$  ---  $30$  ---  $30$  ---  $30$  ---  $30$  ---  $30$  ---  $30$  ---  $30$  ---  $30$  ---  $30$  ---  $30$  ---  $30$  ---  $30$  ---  $30$  ---  $30$  ---  $30$  ---  $30$  ---  $30$  ---  $30$  ---  $30$  ---  $30$  ---  $30$  ---  $30$  ---  $30$  ---  $30$  ---  $30$  ---  $30$  ---  $30$  ---  $30$  ---  $30$  ---  $30$  ---  $30$  ---  $30$  ---  $30$  ---  $30$  ---  $30$  ---  $30$  ---  $30$  ---  $30$  ---  $30$  ---  $30$  ---  $30$  ---  $30$  ---  $30$  ---  $30$  ---  $30$  ---  $30$  ---  $30$  ---  $30$  ---  $30$  ---  $30$  ---  $30$  ---  $30$  ---  $30$  ---  $30$  ---  $30$  ---  $30$  ---  $30$  ---  $30$  ---  $30$  ---  $30$  ---  $30$  ---  $30$  ---  $30$  ---  $30$  ---  $30$  ---  $30$  ---  $30$  ---  $30$  ---  $30$  ---  $30$  ---  $30$  ---  $30$  ---  $30$  ---  $30$  ---  $30$  ---  $30$  ---  $30$  ---  $30$  ---  $30$  ---  $30$  ---  $30$  ---  $30$  ---  $30$  ---  $30$  ---  $30$  ---  $30$  ---  $30$  ---  $30$  ---  $30$  ---  $30$  ---  $30$  ---  $30$  ---  $30$  ---  $30$  ---  $30$  ---  $30$  ---  $30$  ---  $30$  ---  $30$  ---  $30$  ---  $30$  ---  $30$  ---  $30$  ---  $30$  ---  $30$  ---  $30$  ---  $30$  ---  $30$  ---  $30$  ---  $30$  ---  $30$  ---  $30$  ---  $30$  ---  $30$  ---  $30$  ---  $30$  ---  $30$  ---  $30$  ---  $30$  ---  $30$  ---  $30$  ---  $30$  ---  $30$  ---  $30$  ---  $30$  ---  $30$  ---  $30$  ---  $30$  ---  $30$  ---  $30$  ---  $30$  ---  $30$  ---  $30$  ---  $30$  ---  $30$  ---  $30$  ---  $30$  ---  $30$  ---  $30$  ---  $30$  ---  $30$  ---  $30$  ---  $30$  ---  $30$  ---  $30$  ---  $30$  ---  $30$  ---  $30$  ---  $30$  ---  $30$  ---  $30$  ---  $30$  ---  $30$  ---  $30$  ---  $30$  ---  $30$  ---  $30$  ---  $30$  ---  $30$  ---  $30$  ---  $30$  ---  $30$  ---  $30$  ---  $30$  ---  $30$  ---  $30$  ---  $30$  ---  $30$  ---  $30$  ---  $30$  ---  $30$  ---  $30$  ---  $30$  ---  $30$  ---  $30$  ---  $30$  ---  $30$  ---  $30$  ---  $30$  ---  $30$  ---  $30$  ---  $30$  ---  $30$  ---  $30$  ---  $30$  ---  $30$  ---  $30$  ---  $30$  ---  $30$  ---  $30$  ---  $30$  ---  $30$  ---  $30$  ---  $30$  ---  $30$  ---  $30$  ---  $30$  ---  $30$  ---  $30$  ---  $30$  ---  $30$  ---  $30$  ---  $30$  ---  $30$  ---  $30$  ---  $30$  ---  $30$  ---  $30$  ---  $30$  ---  $30$  ---  $30$  ---

$$DG = \frac{m}{m_0} \cdot DO$$
  $\leftarrow$   $DG = \frac{p}{P_0} \cdot DO$   $\leftarrow$   $(1)$  من العلاقة


$$DG = \frac{1}{1} \times 5 = \underline{5 \ cm} \qquad .\underline{5 \ cm}$$

M=5~kg لمقرونة بتأثير محور تعليق العاتق عندما تكون كتلة الحمولة هي  $\overline{R}$  - 4


عند التوازن: 
$$\overrightarrow{P_0} + \overrightarrow{p} + \overrightarrow{R} + \overrightarrow{P} = \overrightarrow{0}$$

 $R=P_0+p+P$  عمودية، ومتجهة نحو الأعلى و شدتها:  $\overrightarrow{R}$  عمودية و متجهة نحو الأعلى و شدتها:

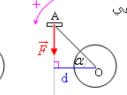
$$R = (m_0 + m + M) \cdot g$$
 ←   
 $R = (1+1+5) \times 10 = 70 N$  .  $g$ 



## حل التمرين 10



: عزم القوة  $(A, \overrightarrow{F})$  في الحالات التالية - 1


أ- عندما يكون الذراع OA أفقيا

$$M_{\perp}(\overrightarrow{F}) = F \cdot d = F \cdot OA$$

$$M_{\Delta}(\overrightarrow{F}) = 60 \times 0.16 = \underline{9.6 \ N.m}$$
  $\underline{...}$ 

ب - عندما يكون الذراع OA رأسيا في هذه الحالة خط تأثير القوة $(A, \overrightarrow{F})$  يتقاطع مع محور الدوران (d=0)

$$M_{A}(\overrightarrow{F}) = 0$$



ت - عندما يكون الذراع OA مائلا بالزاوية ° $lpha=30^\circ$  بالنسبة للخط الأف*ق*ي في كلتا الحالتين الممكنتين:  $d=OA\cdot cos\,lpha$ 

$$M_{\perp}(\overrightarrow{F}) = F \cdot OA \cdot \cos \alpha \leftarrow$$

$$M_{\perp}(\overrightarrow{F}) = 60 \times 0,16 \times \cos 30^{\circ} = 8,3 \ N.m$$