
توازن جسم صلب خاضع لثلاث قوى غير متوازية Equilibre d'un solide soumis à trois forces non parallèles

🚣 نشاط تجريبي 1: إبراز شروط توازن جسم صلب خاضع لثلاث قوى غير متوازية

ننجز التركيب التجريبي جانبه والذي يتكون من:

- $\mathbf{P_1}$ بكرة
- بكرة P₂
- قطعة ورق مقوى وزنها مهمل
 - m_3 ، m_2 ، m_1 كل معلمة
 - $g=10\ N.Kg^{-1}$ شدة الثقالة

 $m_3 = 100 g$ · $m_2 = 120 g$ · $M_1 = 70 g$

٠٠ إستثمار:

- 1. أجرد القوى المطبقة على قطعة ورق مقوى عند التوازن ن ثم حدد القوة التى يمكن إهمال شدتها أمام شدات القوى المتبقية
 - 2. مدد خطوط تاثير هذه القوى ماذا تستنتج ؟
- 3. مثل على الشكل القوى المطبقة عليها باستعمال سلم مناسب
- 4. أنشي المجموع المتجهي (الخط المضلعي) لهذه القوى ماذا
 - 5. إستنتج الشرطين اللازمين لتوازن جسم صلب خاضع لثلاث قوى غير متوازية

🚣 نشاط تجريبي 2 : تحديد مميزات القوة التي يطبقها مستوى مائل على جسم صلب وهو في حالة توازن وخاضع لثلات قوى

نضع حاملا ذاتيا (S) شدة وزنه p=3N على منضدة مائلة بالزاوية lpha=18 بالنسبة للمستوى الافقى ، فينزيق . لتحقيق توازن الحامل الذاتي (S) على المنضدة ، نشده الى نهاية النابض الذي نثبت طرفه الأخر الى حامل $\Delta l = 2 ext{ cm}$ ثابت . ثم نقيس الإطالة فنجد

 $K = 50 \text{ N.m}^{-1}$ هی: $K = 50 \text{ N.m}^{-1}$

- ٠٠ إستثمار:
- 1. أجرد القوى المطبقة على الحامل الذاتي خلال حركته ، ثم فسر سبب إنزلاقه على المنضدة
- 2. أجلاد القوى المطبقة عليه أثناء التوازن و مثل خطوط تأثيرات القوى المطبقة على الحسم (S). ماذا تستنتج ؟
- 3. تحديد مميزات القوة \overline{R} التي يطبقها المستوى المائل على (S) بطريقتين مختلفتين : الطرقة الهندسية والطريقة
- أ. الطريقة الهندسية: أنشي الخط المضلعي لمتجهات القوى المطبقة على (S) وذلك بأستعمال سلم مناسب ثم \overrightarrow{R} استنتج مميزات القوة
- ب. الطريقة التحليلية: إنطلاقا من نقطة I مثل القوى الثلاث المطبقة على (S) وذلك بأستعمال سلم مناسب ثم أوجد إحداثيتي كل قوة في معلم متعامد ممنظم (O , ī , j) حيث (\mathbf{O}, \hat{t}) أفقي موجه نحو اليمين و (\mathbf{O}, \hat{J}) رأسي موجه نحو الأعلى ثم إستنتج شدة القوة \widehat{R}
 - 🚣 نشاط تجريبي 3: تحديد قوة الإحتكاك ، معامل الإحتكاك ، زاوية الإحتكاك

نضع على لوحة خشبية قطعة من خشب S كتلتها m = 300g . نطبق عليها قوة \overline{f} بواسطة دينامومتر بحيث تبقى القطعة S في حالة توازن . يشبر الدينامومتر الى قيمة 3N . ٠٠ إستثمار:

- 1. أجرد القوى المطبقة على قطعة خشب (s)
- بأستعمال السلم m → 1 cm مثل الخط المضلعي للقوى المطبقة على القطعة S ثم إستنتج مميزات القوة المطبقة من طرف اللوحة الخشبية على القطعة S وكذلك طبيعة التماس بين الجسم S و والسطح
 - 3. حدد f شدة قوة الإحتكاك أي الشدة R لقوة الإحتكاك \overrightarrow{R} (المركبة المماسية للقوة \overrightarrow{R}) وقارنها بشدة القوة \overrightarrow{f} المطبقة من طرف الدينامومتر
 - بواسطة الدينامومتر نحدد تجريبيا شدة قوة الإحتكاك خلال الحالات الميكانيكية التالية

5,2	5,1	5,0	3,0	2,0	F(N)
حركة		توازن			الحالة الميكياتيكية

- حدد الشدة الحدية لقوة الإحتكاك التي يختل عندها توازن القطعة S.
- ب. بأستعمال الطريقة المبيانية ، حدد قيمة زاوية الإحتكاك الساكن ϕ_0 (القيمة الحدية التي يختل فيها التوازن فينزلق الجسم على السطح)
 - 5. ماذا يحدث لشدة القوة \vec{F} إذا غيرنا طبيعة التماس