حلول سلسلة الترانزيستور

تمرین-1

$$E = R_1 \cdot I_{B1} + U_{BE}$$
 : نحصل على : $R_1 = \frac{E \cdot U_{BE}}{I_{B1}}$: نستنتج

 $R_1 = 10^4 \,\Omega$: غجد : γ

E=1 I_{cont} I_{cont} 4) نلاحظ أن شدة التيار في دارة القاعدة قد زادت. إذن لايمكن للترانزستور أن يشتغل إلا في الحالة العادية أو أن يصير مشبعا. نحدد القيمة القصوى IBmax ، التي توافق بداية حالة الإشباع حيث:

 $E = R_C$. $I_{Csat} + 0$: * في دارة المجمع * $I_{Csat} = 4, 5.10^{-2} A$:

 $I_{\text{cont}} = \frac{I_{\text{csat}}}{\beta}$: الشدة القصوى I_{Bmax} هي حيث : * $I_{Bmax} = 4, 5. 10^{-4} A :$

. الأشباء إذن الترانزستور في حالة الإشباء $I_{\rm Bmax} < I_{\rm B2}$

🧾 يكتب قانون إضافية التوترات في دارة المجمع : $E = U_{AC} + U_{CE}$ يحب قانون أوم ، بالنسبة للموصل الأومى (AC) : $U_{AC} = R_C \cdot I_C$ $E = R_C \cdot I_C + U_{CE}$ $U_{CE} = E - R_C \cdot I_C$ $U_{CE} = 1.5 \text{ V}$; $i_{C} = 3.10^{-2} \text{ A}$ 2) عا أن الترا نزستور يشتغل في الحالة العادية ، نكتب: $I_C = \beta$. I_{B1} عددیا : ا I_{B1} = 3. 10⁻⁴ A

3) ك قاتون إضافية التوترات بين A و E : UAE = UAB - UBE $U_{AB} = R_1 \cdot I_{B1}$ $U_{AE} = E$

تمرین-2

1) يكتب قانون إضافية التوترات في دارة المجمع: 2.2) نفترض أن الترانزستور يشتغل في الحالة العادية .

 $E = U_{AC} + U_{CE}$

 $U_{AC} = R_C \cdot I_C$: باعتبار قانون أوم نكتب

 $U_{CE} = 0$ و $I_{C} = I_{Csat}$: عند الاشباع

نحصل على :E = R_C . I_{Csat}

 $I_{Csat} = 2.4 \cdot 10^{-2} \,\text{A}$: عددیا $I_{CSAT} = \frac{E}{R_o}$

 $I_{B} = I_{1} - I_{2}$ باعتبار قانون العقد عند B باعتبار قانون العقد عند (1.2

 $U_{AB} = U_{AE} - U_{BE}$: حيث $I_1 = \frac{U_{AB}}{R_1}$: لدينا

 $I_1 = \frac{E - U_{BE}}{R_s}$: اذن $U_{AB} = E - U_{BE}$

 $I_2 = \frac{1}{R_B}$ ولدينا : UBE = RB. I2 أي $I_B = \frac{E - U_{BE}}{R_2} - \frac{U_{BE}}{R_R}$: نحصل على

ت.ع، نجد: A : ا

 $I_{\rm C} \approx 1.2.10^{-2} \, {\rm A}$: عددیا، نحصل علی : $I_{\rm C} = \beta \, . \, I_{\rm B}$

. افتراضنا إذن صحبح ، $I_C < I_{Csat}$

3) نكتب قانون اضافية التوترات في دارة المجمع:

 $E = R_C \cdot I_C + U_{CE}$

نحصل على : UCE = E - RC. IC : نحصل

ت. ع، نجد : U_{CE} ≈ 6 V

3) عند بداية حالة الاشباع، نكتب:

وانطلاقا من تعبير IB ، المحصل عليه في السؤال 1.2، وبتعويض

 $\frac{I_{csat}}{R} = \frac{E - U_{BE}}{R_2} - \frac{U_{BE}}{R_B}$: نکتب : R_2 با

 β . $R_B(E - U_{BE})$ $R_2 = \frac{E_B}{R_B \cdot I_{csat} + \beta \cdot U_{BE}}$

> $R_2 \approx 11500 \Omega$ ت.ع، نجد :

<u>تمرين-3</u>

$$E = U_{AC} + U_{CE}$$
 : حيكتب قانون إضافية التوترات

$$U_{AC} = R_{C} . I_{C} : کتب اوم انون أوم المحتار قانون أوم الم$$

$$E = R_C$$
, $I_C + U_{CE}$: - Lead $I_C - U_{CE}$

$$I_{C} = \frac{E - U_{CE}}{R_{C}} : \frac{1}{R_{C}}$$

. المرحل إذن يغلق دارة الاستعمال :
$$I_C > I_e$$

الترانزستور إذن يشتغل في الحالة :
$$U_{\rm CE} \neq 0$$
 و 1 $_{\rm C} = 0$

$$I_{\rm B} \approx 2,4.10^{-2}\,{\rm A}$$
 العادية. نكتب $I_{\rm B} = \frac{I_{\rm C}}{\beta}$ عدديا ، نجد

3.1) يكتب قانون إضافية التوترات في دارة القاعدة :

$$U_{AE} = E = U_{AD} + U_{DB} + U_{BE}$$

باعتبار قانون أوم ، نكتب :

$$U_{DB} = R_B I_B$$
 $U_{AD} = R_1 I_B$

$$R_1 = \frac{E - U_{BE}}{I_B} - R_B$$
: نستنتج : $R_1 \approx 1,53.10^4 \,\Omega$ نجد $U_{BE} = 0.7 \,V$ نلاحظ أن قيمة R قد زادت $(R_2 > R_1)$ ، إذن قيم

 $E = R_1.I_B + R_B.I_B + U_{BE}$:

نلامظ أن قيمة R قد زادت $(R_2 > R_1)$ ، إذن قيمة R نقصت. الترانزستور غير متوقف. إذن لا يمكنه أن يشتغل إلا في النظام الخطي : منافق القاعدة: يكتب تانون إضافية التوترات في دارة القاعدة: $U_{\rm BE}$ $E = R_2 . I_B + R_B . I_B + U_{BE}$

$$I_B=rac{E-U_{BE}}{R_2+R_B}$$
 نحصل علی $I_C=eta \; rac{E-U_{BE}}{R_2+R_B}$ الدين $I_C=eta \; ar{I}_C=eta \; ar{I}_C=eta \; ar{I}_C$

 $I_{C}\approx 3{,}7.10^{-3}~A\approx 3{,}7~\text{mA}$ عددیا ، نحصل علی المرحل يفتح دارة الاستعمال. $I_C < I_d$

تمرین-4

1.1) التيار المار عبر المصباح هو تيار المجمع . شدته :

$$I_C = I = 0.3 A$$

 $I_{B} = = \frac{I_{C}}{B}$: نكتب نكتب النظام الخطي، نكتب الترانزستور في النظام الخطي، نكتب

2.1) يكتب قانون إضافية التوترات بين A و E:

$$U_{AE} = U_{AD} + U_{DB} + U_{BE}$$

 $U_{AD} = R_2 . I_B$ و $U_{AE} = E : كتب نكتب و المحتبار قانون أوم ، نكتب$

$$U_{DB} = R_B \cdot I_B$$

 $E = R_B . I_B + R_2 . I_B + U_{BE}$

$$R_B = \frac{E - U_{BE}}{I_B} - R_2$$
 : نستنتج

2) **بالنسبة ل**لمقاومة الضوئبة، تزداد مقارمته عسم تكون مي

الظلام. وبالتالي فإن شدة التبار في دارة القاعدة تنقص. فبصبر الترانزستور متوقفا أو يبقى في الحالة العادية.

أذا كان الترانزستور متوقفاً فإن $I_{\rm B}=0$ ، و بالتالي المصباح إذن $I_{\rm B}=0$

* إذا كان الترانزستور في الحالة العادية : نكتب قانون إضافية التوتراه : E , A :

$$E = (R_B + R_1) I_B + U_{BE}$$

 $I_B = \frac{E - U_{BE}}{R_D + R_1} \approx 4.10^{-6} A$:

وتكون شدة التبار في دارة المجمع، أي في المصباح، $I_C < I = 0.3 \text{ A}$, $I_C = \beta$, $I_B = 4 \cdot 10^{-4} \text{ A}$

ذن للصباح لا يضي:

3) من الاستعمالات المكنة للتركيب : كاشف الضوم....

<u>تمرین-5</u>

وباعتبار اشتغال الترانزستور عاديا،

$$I_B \approx 10^{-3} \text{ A}$$
: خبد $I_B = \frac{I_C}{\beta}$: بتک

يصل الى العقدة B التبار ذي الشدة $I_{AB}=I_1$ و ينطلق منها $I_{AB}=I_1$ و ينطلق منها تباران : تبار القاعدة شدته I_B و التبار المار في CTN ، شدته $I_B=I_B+I_B$ بكتب قانون العقد : $I_B=I_B+I_B$

$$E = R.I_1 + U_{BE} :$$

$$R = \frac{E - U_{BE}}{I_1}$$

ت ع، نجد : R = 1950 Ω

12) عند ارتفاع درجة حرارة CTN ، تنقص مقاومتها، إذن تزيد الشدة I₂ وتنقص قبمة I₃.

صحح أن الترانزستور لا يمكن أن يكون إلا متوقفا إو في الحالة المستود الله على الحالة المستود الله المستود المست

 $U_{
m BE} = 0.6 \
m V$: خرض الترانزستور في الحالة العادية

 $I_{2} = \begin{array}{|c|c|c|c|c|}\hline U_{BE} & : & \text{Lin} & . & \text{E. B. } & \text{I. } & \text{$

 $I_2 = \frac{U_{BE}}{R_2} = 3.\,10^{-3} A$: ياعتبار قانون أوم بين B و E نحصل على :

 $I_1 = \frac{{\rm E} - {\rm U}_{\rm BE}}{R} = 2.10^{-3} {\rm A} \ : {\rm (AB)}$. $({\rm AB})$

نلاحظ أن $I_1 < I_2$ ، وهذا يعني أن تبار القاعدة يرد على العقدة

B ، الامر الذي يتناقض ونوع الترانزستور. إذن افتراضنا الاول خاطئ. ونستنتج أن الترانزستور متوقف.

2.2) يمكن استعمال التركيب كمؤشر للبرودة (ينذر بانخفاض درجة الحرارة)