كمــــــه المــادة

I ـ وحدة كمية المادة : المول

<u>1 ـ تعريف بالمول</u>

النشاط 1

مسمار من الحديد يتكون من نظير الحديد $^{56}_{26}Fe$ ، كتلته 112g

1 ـ أحسب عدد الذرات الموجودة في هذا المسمار إذا اعتبرنا أن كتلة نوية تساوي تقريبا $m_{_{z}}=9$. $m_{_{z}}=9$ وكتلة الإلكترونات $m_{_{z}}=9$.

حساب كتلة ذرة واحدة من نظير الحديد
$$M_{atome}(Fe) = M_{nuct} + M_{elec}$$

$$=93.54.10^{-27} \text{ kg}$$

* عدد ذرات نظير الحديد الموجودة في المسمار:

$$N = \frac{0,112}{93.54.10^{-27}} = 1,198.10^{24}$$

2 ـ يلاحظ أن مسمار كتلته 112g يحتوي على عدد كبير من ذرات نظير الحديد $_{x}^{\infty}$ فمن الصعب استعمال هذا العدد الميكروسكوبي في العمليات الحسابية ، لهذا قرر العلماء الكيميائيون التعامل مع مجموعة عيا نية (مكروسكوبية) تتكون من عدد محدود وكبير من الذرات (الجزيئات ، الأيونات والإلكترونات أو دقائق أخرى أو مجموعة نوعية من هذه الدقائق) كوحدة كمية المادة سميت بالمول ، وتم تعريف وحدة كمية المادة : المول على الشكل التالي : " المول هو كمية المادة لمحموعة تحتوي على عدد من المكونات الأساسية بساوي عدد عدد الذرات الموجودة في 0,012kg من الكربون 12 ($_{x}^{(0)}C$

<u>2 ـ ثابتة أفوكادرو</u>

أ ـ أحسب عدد الذرات الموجودة في 0,012kg من الكربون 12 ، إذا علمت أن

$$m(C) = 1,993.10^{-23} g$$

هذا العدد يسمى يعدد أفوكادرو
$$\frac{12.0}{1.993.10^{-23}} = 6.022.10^{23}$$

ونطلق اسم $\frac{1}{2}$ ونطلق اسم $\frac{1}{2}$ ونطلق اسم $\frac{1}{2}$ على المقدار : $\frac{N_A=6\,,022.10^{23}\,mol^{-1}}{10^{23}\,mol^{-1}}$

 $n = \frac{N}{N_A}$ معينة تحتوي على عدد N من المكونات الأساسية هي

ب ـ استنتج كمية مادة الحديد الموجودة في المسمار .

$$n(Fe) = \frac{1,198.10^{24}}{6.022.10^{23}} \cong 2mol$$

النشاط 2

أحسب عدد ذرات النحاس المتواجدة في مول واحد من النحاس ـ

أحسب عدد جزيئات الماء المتواجدة في مول واحد من الماء ـ

أحسب عدد الجزيئات السكاروز C₁₂H₁₂O₁₁ المتواجدة في مول واحد من السكاروز .

أحسب عدد الأيونات Cl⁻ المتواجدة في محلول كلورور الصوديوم

نستنتج ان :

رمز العنصر الكيميائي يمثل مولا واحدا من هذا العنصر

صيغة الجزيئة تمثل مولا واحدا من جزيئات الجسم الخالص .

َCl تمثل مولا واحدا من أيونات الكلورور

II ـ الكتلة المولية الدرية

تعريف: الكتلة المولية الذرية لعنصر كيميائي هي كتلة مول واحد من ذرات هذا العنصر ونرمز لها ب $g \, / \, mol \,$ و X رمز العنصر الكيميائي

مث<u>ال (النشاط 3)</u>

تمثل عينات المواد التالية مولا واحدا من كل مادة : 32, heta g من الكبريت S و 108g من فلز الفضة Ag .

آ ـ بين أن هذه العينتان تضما نفس عدد الأنواع الكيميائية . أعط قيمة هذا العدد .

 N_A عندنا $M(S) = m(s).N_A$ و $M(Ag) = m(Ag).N_A$ مما يبين أن العينتان تضمان نفس العدد وهو وهو $M(S) = m(s).N_A$ بحيث أن $M(S) = m(s).N_A$ كتلة ذرة واحدة من الكبريت

2 ـ أحسب كتلة مول واحد من ذرات الكبريت وكتلة مول واحد من ذرات الفضة .

كتلة مول واحد من ذرات الكبريت هي 32.0g

كتلة مول واحد من ذرات الكبريت هي (M(S

إذن M(s)=32.0g/mol والتي تمثل الكتلة المولية الذرية للكبريت.

<u>مثال 2</u>

 $^{63}_{29}Cu$ نعتبر العنصر الكيميائي النحاس Cu في الحالة الطبيعية يتكون أساسا من نظيرين Cu نعتبر العنصر الكيميائي النحاس $^{63}_{29}Cu$ و $^{69}_{29}Cu$.

أحسب الكتلة المولية الذرية لعنصر النحاس في الحالة الطبيعية .

احسب الحبية المولية القرية فعنصر المعاس في العالم الطبيعية . نعلم أن الكتلة المولية لعنصر كيميائي تساوي تقريبا عدد الكتلة A

إذن $M(\)=65$ g/mol و $M(\)=65$ g/mol و $M(\)=65$ g/mol و $M(\)=63$ g/mol و النحاس في الحالة $M(\)=65$ g/mol و الطبيعية هي $M(\)=65$ g/mol و الطبيعية هي $M(\)=65$ g/mol و الطبيعية هي $M(\)=65$ g/mol و الطبيعية هي الحالة

III ـ الكتلة المولية الحزيئية

1 ـ تعریف

نسمي الكتلة المولية الجزيئية لجسم خالص ما ، كتلة مول واحد من جزيئات هذا الجسم ونعبر عنها ب Kg/mol أو ب g/mol

2 ـ كيفية حساب الكتلة المولية الحزيئية

أحسب الكتلة المولية للجزيئات التالية :

الكتل المولية الجزيئية (g/mol)	الجزيئات
	ثنائي الأوكسيجين O ₂
	ثنائي الأزوت N ₂
	الميثان CH ₄
	الساكاروز C ₁₂ H ₁₂ O11
	حمض الكبريتيك H ₂ SO ₄

أحسب الكتلة المولية للمركبات الأيونية

الصيغة الإجمالية للمركبات
الأيونية
كلورور الصوديوم Na Cl
أوكسيد الألومينيوم Al ₂ O ₃
هيدروكسيد النحاس II
Cu(OH) ₂

VI _ الحجم المولي لغاز

<u>1 ـ تعریف :</u>

الحجم المولى لغاز هو الحجم الذي تشغله كمية مادة تساوي مولا واحدا من هذا الغاز .

2 ـ قانون أفوكادرو أمسر

النشاط 5

قارورتان A و B من نفس الحجم $V_A = V_B$. تحتوي القارورة A على غاز ثاني أوكسيد الكربون و القارورة B على غاز ثنائي الأوكسيجين . كتلة غاز ثنائي أوكسيد الكربون في القارورة A هي $m_A = 2,6g$ وكتلة غاز ثنائي الأوكسيجين في القارورة B هي $m_B = 1,9g$.

ما هي كمية مادة الغاز في كل قارورة ؟ نعطي M(O)=16g/mol و M(C)=12g/mol نعلم أن مول واحد من غاز ثنائي أوكسيد الكربون كتلته M(CO₂)=44g $n(CO_2) = \frac{m_A}{M(CO_2)} = \theta,06mol$ هي $m_A = 2,6g$ هي الكربون كتلته وذن كمية مادة غاز ثنائي اوكسيد الكربون كتلته

 $n(O_2) = \frac{m_B}{M(O_2)} = 0.06 \, mol$ نفس الشيء بالنسبة لكمية مادة غاز الأوكسيجين

نستنتج $n(CO_2) = n(O_2)$ أي نفس عدد الجزيئات في كل قارورة

تعمم هذه النتيجة على كل الغازات

في نُفس الشروط لدرجة الحرارة والضغط ، تحتوي حجوم متساوية لغازات مختلفة على نفس كمية المادة (أو نفس عدد مولات الجزيئات)

* قانون أفوكادرو ـ أمبير

يشغل موك الجزيئات نفس الحجم في نفس الشروط لدرجة الحرارة والضغط ، كيفما كانت طبيعة الغاز . في نفس الشروط 1 mol من غاز الأوكسيجين يشغل حجما ($v_{
m m}({
m O}_2)$

ر الله الهيدروجين حجما (M₂) الهيدروجين حجما

 $v_{m}(O_{2})=v_{m}(H_{2})=Cte$ حسب قانون أفوكادرو ـ أمبير

3 ـ الشروط النظامية والحجم المولي النظامي

الضغط النظامي: p₀=1atm

درجة الحرارة النظامية T₀=273,15K أي t=0°C درجة الجليد المنصهر .

هذه الشروط تسمى بالشروط النظامية لدرجة الحرارة والضغط .

تعريف بالحجم المولي النظامي: نسمي الحجم المولي النظامي الحجم الذي يشغله مولا واحدا من جزيئات الغاز في الشروط النظامية . ويساوي $rac{V_{m}}{22,4\ell} = rac{V_{mol}}{2}$

4 ـ تعيين كتافة غاز بالنسبة للهواء

 $d = \frac{m}{m'}$: نعرف كتافة غاز بالنسبة للهواء بالعلاقة التالية

m كتلة ححم من الغاز

'm كتلة الحجم نفسه من الهواء

في الشروط النظامية : الحجم المولي النظامي $V_{_m}=22$, 4ℓ / mol المظامية تساوي ℓ / ℓ المظامية تساوي ℓ / ℓ

 $M'=
ho.V_{\scriptscriptstyle heta}=1,293 imes22,4=29g$ / سواء هي الهواء هي الهواء من الهواء

 $d=rac{M}{29}$ ومنه نستنتج كتافة غاز بالنسبة للهواء

M الكتلة المولية للغاز .

مثال : أحسب كتافة غاز ثنائي أوكسيد الكربون .

<u>۷ ـ كمية المادة</u>

<u>1 ـ العلاقة بين كمية المادة والكتلة </u>

عينة كتلتها m تَتكون من نفس الّنوع X (ذرات ، جزيئات الخ ..) كتلته المولية (M(X عدد مولات النوع X في هذه العينة هو (n(X) بحيث أن المقادير n(X) ، m(X) ، m(X) ، m(X) تتناسب فيما بينها .

 $n(X) = \frac{m(X)}{M(X)}$ أي أن $\frac{n(X)}{1} = \frac{m(X)}{M(X)}$

<u>2 ـ كمية المادة والحجم المولى</u>

 $n = rac{v}{V_m}$ نعلم أن مول واحد من غاز حجمه V_m إذن عدد المولات n في حجم v من هذا الغاز هي

ملحوظة: نأخذ v و V_m في نفس شروط درجة الحرارة والضغط.