المادة: الكي الشعبة: الجذع المشترك العلمي و التكنولوجي خ: أيوب مرضر الثانوية التأهيلية محمد السادس (س.م) التركيز المولى للأنواع الجزيئية في الحلول

La concentration molaire des espèces molèculaires dans une solution

سلسلة التمارين

نعطى : M(O)=16g/mol ، M(Cl)=35g/mol ، M(Na)=23g/mol $.M(N)=14g/mol, M(H)=1g/mol \cdot M(Fe)=56g/mol$

التمرين 1

نحضر محلول مائى لكلورور الصوديوم NaCl حجمه V=200mL بإذابة كتلة m=5,85g من كلورور الصوديوم .

- 1) أحسب التركيز المولى للمحلول المحصل.
- $_{
 m e}$ نضيف للمحلول المحصل عليه حجما $V_{
 m e}$ 300mL من الماء المقطر ، أحسب التركيز $^{
 m v}$

التمرين 2

 $m C=10^{-2}mol/L$. فنحصل على محلول تركيزه FeCl $_2$ حجمه V=500ml . فنحصل على محلول تركيزه

- 1) أحسب كتلة m من الكلورور الحديد الثاني اللازمة لتحضير هذا المحلول.
- ي نأخذ حجما m V=10mL من محلول المحضر ، ونضيف إليها الماء الخالص ، فنحصل على محلول m S' تركيزه m I $. C'=10^{-3} \text{mol/L}$
 - أ. أحسب حجم المحلول S' الناتج.
 - ب. أحسب حجم الماء الخالص المضاف.

التمرين 3

الصودا أو هيدروكسيد الصوديوم ، هو جسم أبيض كثير الذوبان في الماء . صيغته الكيميائية NaOH . نحضر محلولا مانيا S_1 للصودا حجمه V_1 =250mL مانيا S_1 بإذابة كتلة

- 1) أحسب كمية المادة المذابة من الصودا.
- S_1 أحسب تركيز المولى C_1 للمحلول (2
- نحضر محلول S_2 تركيزه $V_2=1$ من الماء الخالص $V_2=1$ من الماء الخالص $V_2=1$ من الماء الخالص (3 أ. ما أسم هذه العملية ؟
 - \mathbf{S}_2 ب. أحسب الحجم \mathbf{V}_1 اللازم أخذه من المحلول المحلول \mathbf{V}_1
 - ج. أستنتج حجم الماء المقطر المضاف.

التمرين 4

تحمل لاصقة قارورة محلول S_0 تجاري للأمونياك NH_3 المعلومات التالية: الكثافة 0.95 ، النسبة المئوية الكتلية للأمونياك $\|$ هي %28.

- 1) أوجد قيمة التركيز المولى للمحلول التجارى.
- S_1 انطلاقا من المحلول التجاري، نريد تحضير محلول S_1 حجمه S_1 و تركيزه S_1 مرة أصغر من تركيز المحلول التجاري. أحسب حجم المحلول التجاري الذي يجب يجب أخذه للحصول على المحلول S1.