Corrigé de l'exercice 1 :

1. Soit $x \in \mathbb{R}$, on a:

$$-x \in \mathbb{R}$$

$$f(-x) = \frac{-10(-x)}{1 + (-x)^2} = \frac{10x}{1 + x^2} = -\frac{10x}{1 + x^2} = -f(x)$$

Donc pour tout
$$x$$
 de \mathbb{R} , on a:
$$\begin{cases} -x \in \mathbb{R} \\ f(-x) = -f(x) \end{cases}$$

D'où f est une fonction impaire

2. Soit $x \in \mathbb{R}$:

On a:

$$f(x) - 5 = \frac{-10x}{1+x^2} - 5 = \frac{-10x - 5 - 5x^2}{1+x^2} = \frac{-5(x^2 + 2x + 1)}{1+x^2} = \frac{-5(x+1)^2}{1+x^2}$$

Puisque
$$\frac{-5(x+1)^2}{1+x^2} \le 0$$
 alors $f(x) \le 5$

De plus ,il est clair que f(-1)=5 (si non vous pouvez résoudre l'équation f(x)=5)pour

Et par suite tout x de \mathbb{R} , on a: $f(x) \le f(-1)$

On conclut que f(-1)=5 est la valeur maximale de f sur \mathbb{R}

3. a) Soient a et b deux réels distincts, on a :

$$\frac{f(a)-f(b)}{a-b} = \frac{\frac{-10a}{1+a^2} - \frac{-10b}{1+b^2}}{a-b}$$

$$= \frac{-10a(1+b^2)+10b(1+a^2)}{(1+a^2)(1+b^2)(a-b)}$$

$$= \frac{10(-a-ab^2+b+ba^2)}{(1+a^2)(1+b^2)(a-b)}$$

$$= \frac{10(-(a-b)+ab(a-b))}{(1+a^2)(1+b^2)(a-b)}$$

$$= \frac{10(a-b)(ab-1)}{(1+a^2)(1+b^2)(a-b)}$$

$$= \frac{10(ab-1)}{(1+a^2)(1+b^2)}$$

Donc pour tout a et b deux réels distincts, on a: $\frac{f(a)-f(b)}{a-b} = \frac{10(ab-1)}{(1+a^2)(1+b^2)}$

b)

 \triangleright étudions la monotonie de la fonction f sur [0,1]:

on a:
$$10 > 0$$
 et $(1+a^2)(1+b^2) > 0$

et on a :
$$\begin{cases} 0 \le a \le 1 \\ 0 \le b \le 1 \end{cases}$$

Donc
$$0 \le ab \le 1$$

Donc
$$ab-1 < 0$$

Et puisque $a \neq b$ alors ab-1 < 0

D'où
$$\frac{f(a)-f(b)}{a-b} < 0$$

Et par suite f est strictement décroissante sur [0,1]

 \triangleright étudions la monotonie de la fonction f sur $[1,+\infty[$:

on a:
$$10 > 0$$
 et $(1+a^2)(1+b^2) > 0$

et on a :
$$\begin{cases} a \ge 1 \\ b > 1 \end{cases}$$

Donc
$$ab > 1$$

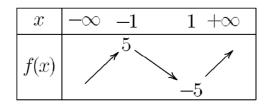
Donc
$$ab-1 \ge 0$$

Et puisque $a \neq b$ alors ab-1>0

D'où
$$\frac{f(a)-f(b)}{a-b} > 0$$

Et par suite f est strictement croissante sur $[1,+\infty[$

- 4. On a f est une fonction impaire
 - \triangleright Puisque f est strictement décroissante sur [0,1] alors f l'est aussi sur [-1,0]
 - \triangleright Puisque f est strictement croissante sur $[1,+\infty[$ alors f l'est aussi sur $]-\infty,1]$ D'où, le tableau de variation de f



Corrigé de l'exercice 2 :

1.
$$f(x) = \frac{x}{x-1}$$

 $D_f = \{x \in \mathbb{R} / x - 1 \neq 0\} = \{x \in \mathbb{R} / x \neq 1\} =]-\infty, 1[\cup]1, +\infty[$

2. Soient a et b deux éléments distincts de D_f , on a :

$$\frac{f(a)-f(b)}{a-b} = \frac{\frac{a}{a-1} - \frac{b}{b-1}}{a-b}$$

$$= \frac{\frac{ab-a-ab+b}{(a-1)(b-1)}}{a-b}$$

$$= \frac{-(a-b)}{(a-1)(b-1)(a-b)}$$

$$= \frac{-1}{(a-1)(b-1)}$$

Donc pour tout a et b deux éléments distincts de D_f : $\frac{f(a)-f(b)}{a-b} = \frac{-1}{(a-1)(b-1)}$

$$\underline{\text{Sur}}$$
] $-\infty$,1[$\underline{:}$

On a a < 1 et b < 1

Donc a-1 < 0 et b-1 < 0

Donc
$$\frac{-1}{(a-1)(b-1)} < 0$$

Donc
$$\frac{f(a)-f(b)}{a-b} < 0$$

Et par suite f est strictement décroissante sur $]-\infty,1[$

$$\underline{Sur}$$
]1,+ ∞ [$\underline{:}$

On a a > 1 et b > 1

Donc a-1>0 et b-1>0

Donc
$$\frac{-1}{(a-1)(b-1)} < 0$$

Donc
$$\frac{f(a)-f(b)}{a-b} < 0$$

Et par suite f est strictement décroissante sur $]1,+\infty[$

3. Le tableau de variation de f:

	\overline{x}	$-\infty$:	$1 + \infty$
,	f(x)	/	7

4. On a
$$\sqrt{2} \in]1, +\infty[$$
, $\sqrt{3} \in]1, +\infty[$ et $\sqrt{2} < \sqrt{3}$

Puisque f est strictement décroissante sur $]1,+\infty[$ alors $f(\sqrt{2})>f(\sqrt{3})$

Et par suite
$$\frac{\sqrt{2}}{\sqrt{2}-1} > \frac{\sqrt{3}}{\sqrt{3}-1}$$
.

Corrigé de l'exercice 3 :

1.

$$D_g = \{x \in \mathbb{R} / x - 2 \neq 0\} = \{x \in \mathbb{R} / x \neq 2\} =] - \infty, 2[\cup]2, +\infty[$$

$$\triangleright$$
 Soit $x \in D_g$, on a:

$$1 + \frac{2}{x-2} = \frac{x-2+2}{x-2} = \frac{x}{x-2} = g(x)$$

Donc pour tout x de D_g : $g(x) = 1 + \frac{2}{x-2}$

2.

$$\Rightarrow f(x) = x^2 - 2x$$

On a:
$$a = 1$$
 donc $a > 0$

Et on a:
$$\frac{-b}{2a} = \frac{-(-2)}{2(1)} = 1$$
 et $f\left(\frac{-b}{2a}\right) = f(1) = -1$

x	$-\infty$	1	$+\infty$
f(x)	1	— 1	1

$$\triangleright g(x) = \frac{x}{x-2}$$

On a:
$$\begin{vmatrix} 1 & 0 \\ 1 & -2 \end{vmatrix} = -2$$
 donc $\begin{vmatrix} 1 & 0 \\ 1 & -2 \end{vmatrix} < 0$

x	$-\infty$ 2	$2 + \infty$
f(x)		1

3.

 \triangleright Déterminons les points d'intersection de (C_f) avec l'axe des abscisses :

Résolvons dans \mathbb{R} l'équation : f(x) = 0

$$f(x) = 0$$
 équivaut à $x^2 - 2x = 0$

$$f(x) = 0$$
 équivaut à $x = 0$ ou $x = 2$

Et par suite :
$$(C_f) \cap (Ox) = \{A(1,0); B(2,0)\}$$

ightharpoonup Déterminons les points d'intersection de $\left(C_{f}\right)$ avec l'axe des ordonnées :

Calculons f(0):

On a:
$$f(0) = 0$$

Donc
$$(C_f)\cap(Oy)=\{O(0,0)\}$$

 \triangleright Déterminons les points d'intersection de (C_g) avec l'axe des abscisses :

Résolvons dans $\mathbb{R} - \{2\}$ l'équation : g(x) = 0

$$g(x) = 0$$
 équivaut à $\frac{x}{x-2} = 0$

$$g(x) = 0$$
 équivaut à $x = 0$

Et par suite :
$$(C_g) \cap (Ox) = \{O(0,0)\}$$

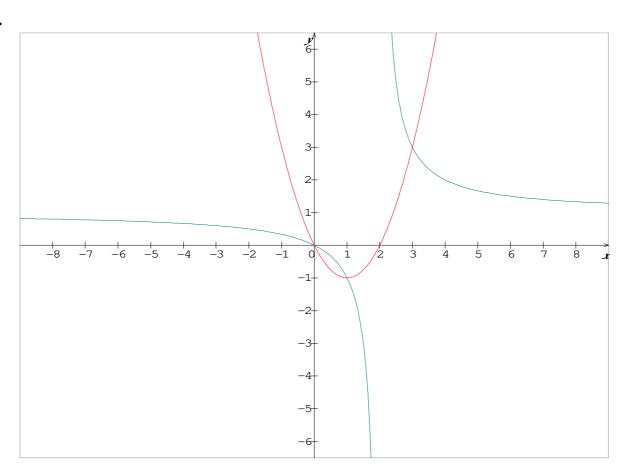
ightharpoonup Déterminons les points d'intersection de $\left(C_{g}\right)$ avec l'axe des ordonnées :

Calculons g(0):

On a:
$$g(0) = 0$$

Donc
$$(C_g) \cap (Oy) = \{O(0,0)\}$$

4.



5. Résolvons dans $\mathbb{R} - \{1\}$ l'équation : f(x) = g(x)

$$f(x) = g(x)$$
 équivaut à $x^2 - 2x = \frac{x}{x - 2}$

équivaut à
$$x(x-2) - \frac{x}{x-2} = 0$$

équivaut à
$$x\left[(x-2)-\frac{1}{x-2}\right]=0$$

équivaut à
$$x \left[\frac{(x-1)(x-3)}{x-2} \right] = 0$$

équivaut à
$$x = 0$$
 ou $x = 1$ ou $x = 3$

et par suite
$$(C_f) \cap (C_g) = \{A(1,-1); O(0,0); D(3,3)\}$$

6. graphiquement l'inéquation $f(x) \le g(x)$ équivaut à déterminer les intervalles dont on a (C_f) est au-dessous de (C_g)

c-à-d
$$S = [0,1] \cup]2,3]$$

7.
$$h(x) = \frac{|x|}{|x|-2}$$

a)
$$D_h = \{x \in \mathbb{R} \mid |x| - 2 \neq 0\} = \{x \in \mathbb{R} \mid |x| \neq 2\} = \mathbb{R} - \{-2, 2\} =]-\infty, -2[\cup]-2, 2[\cup]2, +\infty[$$

b) Soit $x \in D_h$, on a:

 $ightharpoonup -x \in D_h$ (car D_h est symétrique par rapport à 0)

$$ho h(-x) = \frac{|-x|}{|-x|-2} = \frac{|x|}{|x|-2} = h(x)$$

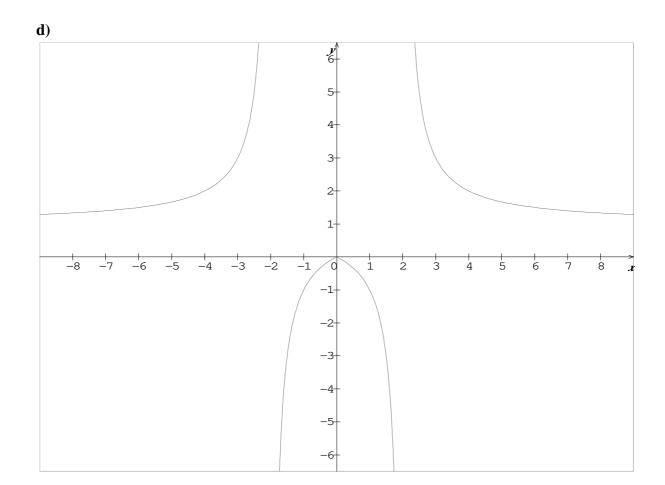
Donc pour tout
$$x$$
 de D_h , on a :
$$\begin{cases} -x \in D_h \\ h(-x) = h(x) \end{cases}$$

D'où la fonction h est paire

c) Soit $x \in \mathbb{R}^+ - \{2\}$, on a:

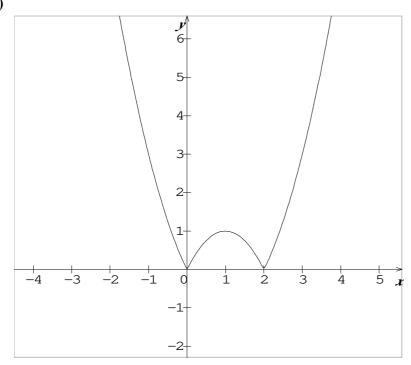
$$h(x) = \frac{|x|}{|x|-2} = \frac{x}{x-2} = g(x) \quad car \quad \begin{cases} x \ge 0 \\ |x| = x \end{cases}$$

Donc h(x) = g(x) pour tout x de $\mathbb{R}^+ - \{2\}$



$$8. \quad k(x) = |f(x)|$$

a)



b) le nombre de solutions de l'équation k(x) = m est le nombre de points d'intersection de (C_k) et l'axe (Δ_m) : y = m

 \triangleright Si m < 0: l'équation n'a pas de solutions

 \triangleright Si m = 0: l'équation admet deux solutions

 \triangleright Si 0 < m < 1: l'équation admet 4 solutions

 \triangleright Si m=1: l'équation admet 3 solutions

 \triangleright Si m > 1: l'équation admet deux solutions

Corrigé de l'exercice 4 :

1.

$$\triangleright \quad D_{g} = \left\{ x \in \mathbb{R} \mid x+1 \neq 0 \right\} = \left\{ x \in \mathbb{R} \mid x \neq -1 \right\} = \left] -\infty, -1 \left[\cup \right] -1, +\infty \left[-1, +\infty \right]$$

 \triangleright Soit $x \in D_g$, on a:

$$3 - \frac{6}{x+1} = \frac{3(x+1)-6}{x+1} = \frac{3x+3-6}{x+1} = \frac{3x-3}{x+1} = g(x)$$

Donc pour tout x de D_g : $g(x)=1+\frac{1}{x-1}$

2.

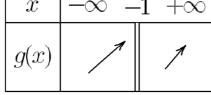
$$\Rightarrow f(x) = x^2 - 2x + 1$$

On a: a = 1 donc a > 0

Et on a:
$$\frac{-b}{2a} = \frac{-(-2)}{2(1)} = 1$$
 et $f\left(\frac{-b}{2a}\right) = f(1) = 0$

x	$-\infty$ 1 $+\infty$
f(x)	

$$|g(x)| = \frac{3x - 3}{x + 1}$$
On a: $\begin{vmatrix} 3 & -3 \\ 1 & 1 \end{vmatrix} = 6$ donc $\begin{vmatrix} 3 & -3 \\ 1 & 1 \end{vmatrix} > 0$



3.

 \triangleright Déterminons les points d'intersection de (C_f) avec l'axe des abscisses :

Résolvons dans \mathbb{R} l'équation : f(x) = 0

$$f(x) = 0$$
 équivaut à $x^2 - 2x + 1 = 0$

$$f(x) = 0$$
 équivaut à $x = 1$

Et par suite :
$$(C_f) \cap (Ox) = \{A(1,0)\}$$

ightharpoonup Déterminons les points d'intersection de $\left(C_{f}\right)$ avec l'axe des ordonnées :

Calculons f(0):

On a:
$$f(0) = 1$$

Donc
$$(C_f)\cap (Oy) = \{B(0,1)\}$$

 \triangleright Déterminons les points d'intersection de (C_g) avec l'axe des abscisses :

Résolvons dans $\mathbb{R} - \{-1\}$ l'équation : g(x) = 0

$$g(x) = 0$$
 équivaut à $\frac{3x-3}{x+1} = 0$

$$g(x) = 0$$
 équivaut à $x = 1$

Et par suite :
$$(C_g) \cap (Ox) = \{A(1,0)\}$$

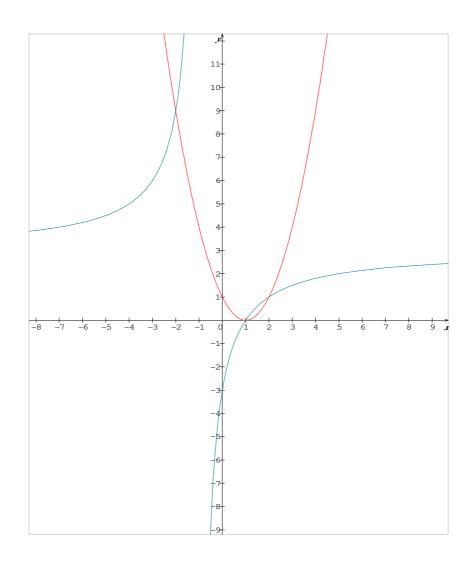
ightharpoonup Déterminons les points d'intersection de $\left(C_{g}\right)$ avec l'axe des ordonnées :

Calculons g(0):

On a:
$$g(0) = -3$$

Donc
$$(C_g)\cap (Oy) = \{C(0,-3)\}$$

4.



5. Résolvons dans
$$\mathbb{R} - \{-1\}$$
 l'équation : $f(x) = g(x)$

$$f(x) = g(x) \text{ équivaut à } x^2 - 2x + 1 = \frac{3x - 3}{x + 1}$$
équivaut à $(x - 1)^2 - \frac{3(x - 1)}{x + 1} = 0$
équivaut à $(x - 1) \left[(x - 1) - \frac{3}{x + 1} \right] = 0$
équivaut à $(x - 1) \left[\frac{x^2 - 4}{x + 1} \right] = 0$

équivaut à
$$x = -2$$
 ou $x = 1$ ou $x = 2$

et par suite $(C_f) \cap (C_f) = \{A(1,0); E(-2,9); F(2,1)\}$

6. graphiquement l'inéquation $f(x) \ge g(x)$ équivaut à déterminer les intervalles dont on a (C_f) est au-dessus de (C_g)

c-à-d
$$S =]-\infty, -2] \cup]-1,1] \cup [2, +\infty[$$

7.
$$h(x) = \frac{3|x|-3}{|x|+1}$$

a)
$$D_h = \{x \in \mathbb{R} / |x| + 1 \neq 0\} = \mathbb{R}$$
 (car pour tout x de \mathbb{R} , on a: $|x| + 1 \neq 0$ ($|x| \geq 0$)

b) Soit $x \in \mathbb{R}$, on a:

$$\triangleright -x \in \mathbb{R}$$

$$h(-x) = \frac{3|-x|-3}{|-x|+1} = \frac{3|x|-3}{|x|+1} = h(x)$$

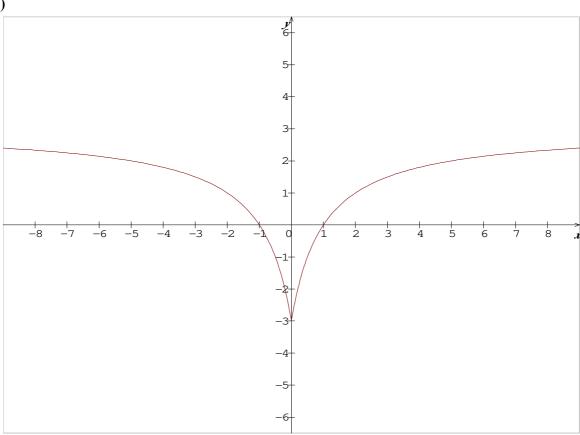
Donc pour tout
$$x$$
 de \mathbb{R} , on a :
$$\begin{cases} -x \in \mathbb{R} \\ h(-x) = h(x) \end{cases}$$

D'où la fonction h est paire

c) Soit $x \in \mathbb{R}^+$, on a:

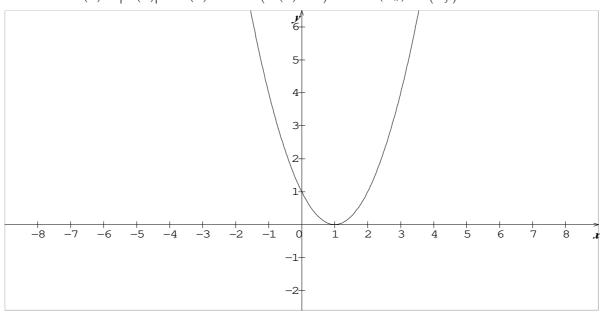
$$h(x) = \frac{3|x|-3}{|x|+1} = \frac{3x-3}{x+1} = g(x)$$
 car $\begin{cases} x \ge 0 \\ |x| = x \end{cases}$

Donc h(x) = g(x) pour tout x de \mathbb{R}^+



$$8. \quad k(x) = |f(x)|$$

a) On a k(x) = |f(x)| = f(x) car $(f(x) \ge 0)$ donc (C_k) et (C_f) sont confondues



تم تحمیل هذا الملف من موقع Talamidi.com

Tronc Commun **Série 2 : Etude de Fonctions**

b) le nombre de solutions de l'équation k(x) = m est le nombre de points d'intersection de (C_k) et l'axe (Δ_m) : y = m

 \triangleright Si m < 0: l'équation n'a pas de solutions

 \triangleright Si m = 0: l'équation admet une seule solution

 \triangleright Si m > 0: l'équation admet deux solutions

