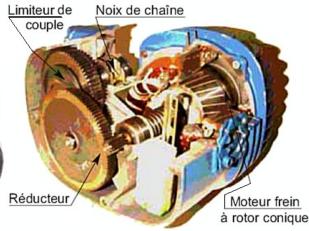


FONCTION TRANSMETTRE L'ÉNERGIE Aspect Technologique

Applications


ne STM Doc : élève

Application N° 07 : "PALAN ÉLECTRIQUE A CHAÎNE"

1- Mise en situation:

Le système étudié est un palan électrique à chaîne de type PK, il est conçu par la division manutention de la société MANNESMANN DEMAG pour soulever des faibles charges (force de levage 125kg)

1-1 Constitution:

Le palan électrique à chaîne objet de cette étude est composé d' :

- un moteur frein (puissance : Pm= 300 W à 1775 tr/min) à rotor coulissant et frein incorporé. Le frein, débrayé par la mise sous tension du moteur à rotor conique, fonctionne à sec.
- un réducteur à engrenages composé de deux couples de roues cylindriques à dentures droites (21, 27) et (25,37).
- un limiteur de couple à friction évite toute surcharge et remplace efficacement les interrupteurs de fin de course électriques pour les positions extrêmes du crochet.
- une chaîne calibrée à maillons d'acier à haute résistance.

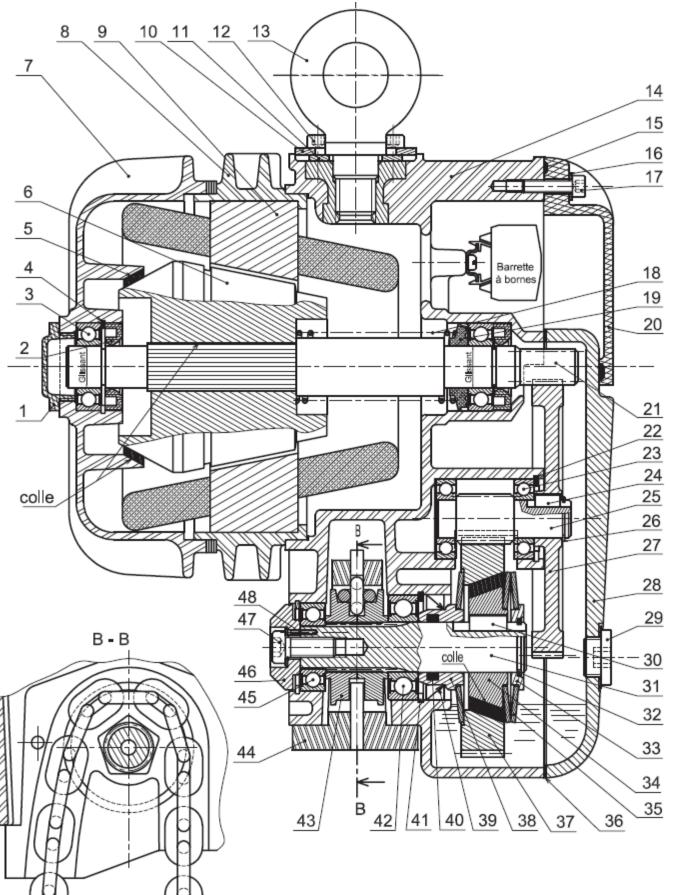
1-2 Fonctionnement:

L'alimentation du moteur en courant électrique provoque la translation vers la droite du rotor coulissant (6) avec l'arbre moteur (21) (le rotor coulissant (6) est collé sur l'arbre moteur (21) et les bagues intérieures des roulements (3) sont glissantes). Ce déplacement permet à l'ensemble d'être en position de travail.

Les deux couples d'engrenages (21,27) et (25,37) assurent la transmission du mouvement de rotation de l'arbre moteur à la noix (43) qui entraîne la chaîne à l'extrémité de laquelle est attachée la charge à soulever. La coupure du courant électrique provoque l'arrêt et le freinage du moteur par déplacement du rotor coulissant (6) et l'arbre moteur (21) vers la gauche.

Nomenclature du dessin d'ensemble

Nomenclature du dessin d'ensemble


		Clavette parallèle, forme B, 5x5x10 48 1 Goupille diamètre 4,8							
24	1	Clavette parallèle, forme B,		5x5x10	48	1	Goupille diamètre 4,8		
23	2	Roulement BC			47	1	Vis CHc		
22	1	Anneau élastique	C 80		46	1	Anneau de réglage	E 295	1
21	1	Arbre moteur		m=1	45	1	Roulement BC		1
20	1	Couvercle de boîte à bornes			44	1	Guide chaîne		
19	1	Bague de butée			43	2	Demi-noix à empreintes	C 35	
18	1	Ressort de rappel			42	1	Roulement BC		
17	3	Vis CHc			41	1	Anneau élastique		
16	3	Rondelle			40	1	Joint torique 20x3		
15	1	Joint torique			39	1	Joint à lèvre, type A, 30x42x7		
14	1	Carter principal	EN-AW-1050		38	1	Anneau-guide	E 295	
13	1	Oreillette de suspension	C 35		37	1	Roue dentée		m=1,5
12	4	Vis CHc			36	1	Joint de carter		
11	1	Rondelle ressort 20,4x40x2,25			35	3	Rondelle ressort 31x63x2,5		
10	1	Plaquette d'arrêt	E 295		34	1	Disque d'accouplement		
9	1	Stator			33	1	Anneau-guide	E 295	
8	1	Carter	EN-AW-1050		32	1	Anneaux élastique	C 80	
7	1	Capot porte-palier coté frein			31	1	Arbre de sortie		
6	1	Rotor coulissant			30	1	Clavette parallèle, forme B		6x6x10
5	1	Garniture de frein collée			29	1	Bouchon M16x1,5		
4	1	Anneaux élastique	C 80		28	1	Couvercle de carter		
3	2	Roulement BC			27	1	Roue dentée		m=1
2	2	Joint à lèvre, type A,		17x35x7	26	1	Anneaux élastique		
1	1	Bouchon fileté			25	1	Pignon arbré		m=1,5
Rep	Nb	Désignation	Matière	Obs	Rep	Nb	Désignation	Matière	Obs

@.EZZ@HR@OUI

2^{eme} STM Doc : élève

FONCTION TRANSMETTRE L'ÉNERGIE : Aspect Technologique

FONCTION TRANSMETTRE L'ÉNERGIE Aspect Technologique

Applications

Ε

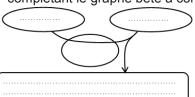
Aspect Technologique

L'ÉNERGIE

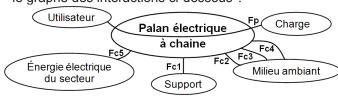
FONCTION TRANSMETTRE

В

С


Rondelle belleville (35)

Ressort (18)


2- Travail demandé :

2-1- Étude fonctionnelle :

a- Expliquer le besoin d'utilisation de ce palan en complétant le graphe bête à corne ci-dessous ?

b- Identifier les fonctions de services intervenant dans le graphe des interactions ci-dessous?

2.2- Schéma cinématique du palan :

a- A partir du dessin d'ensemble, compléter par les

repères des pièces, les groupes des classes d'équivalence suivantes A = {14,; B = {21,;

 $C = \{27, \dots;$ E = {31,;

D = {37, $F = \{34, \dots; \}$

b- Compléter le schéma cinématique minimal ci-dessus du palan électrique à chaîne.

2.3 Étude cinématique :

Puissance moteur est P_m = 300 W. La vitesse de rotation de l'arbre moteur (21) est N_{21} = 1775 tr/min. Le diamètre moyen d'enroulement de la chaîne sur la noix (43) est $d_{43} = 50$ mm.

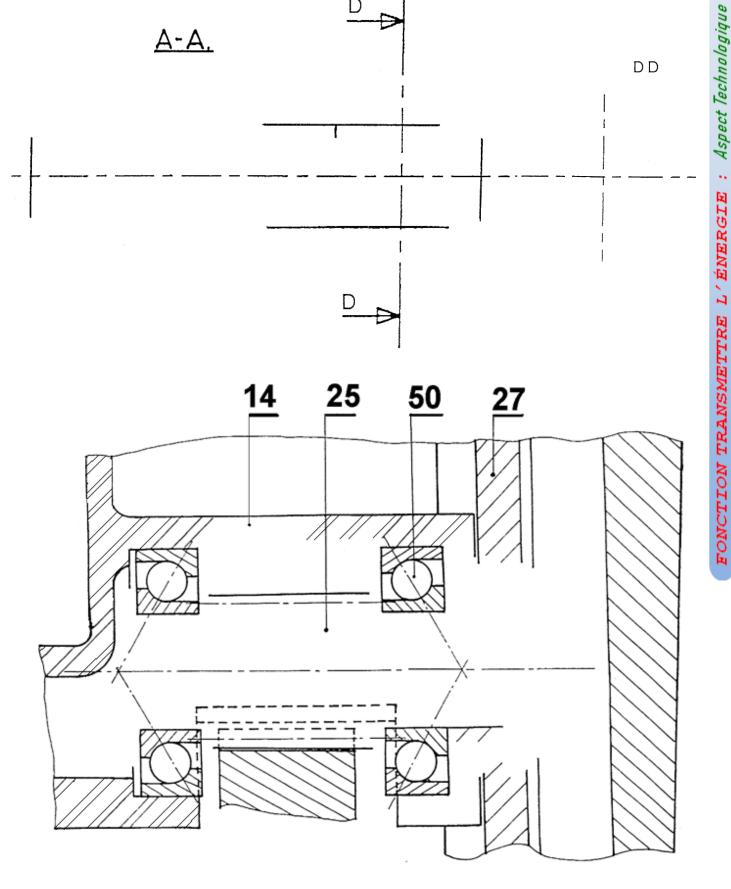
a-Compléter le tableau des caractéristiques des roues dentées (21, 27, 25 et 37) du réducteur :

-	-	•	•	
Pignon / Roue	Z=	m=	d=	a=
Pignon arbré 21	14			
Roue 27		1	110	
Pignon arbré 25		1,5		69
Roue 37	70			09

- b- Calculer la vitesse de rotation de la noix (43) en tr/min :
- c- Calculer la vitesse de la montée de la charge en m/s :
- d- Calculer la valeur de la charge maximale soulevée en N sachant que le rendement du palan n = 0.75 :

2.4 Étude du mécanisme formé par les sous ensemble : (E, F et les rondelles Belleville 35).

Ce palan est conçu pour soulever des charges maximales de 120 daN. Pour éviter des surcharges éventuelles, un mécanisme E, F est interposé dans la chaine cinématique entre la roue 37 et l'arbre 31.


- a- Expliquer le comportement de ce mécanisme en cas où la charge soulevée dépasse les possibilités du palan :
- b- Quel(s) rôle(s) jouent les rondelles 35 dans la transmission du couple ?
- c- Expliquer comment s'effectue le réglage de la valeur du couple transmissible :
- d- Étant donné le couple maximal transmissible par le limiteur : C_{maxi}= F.R_{mov}. f /sinα = 6,5 N.m Calculer la valeur de la force pressante F?
 - avec : F : force pressante ; f = 0,4 : coefficient de frottement des surface de friction ;
 - α = 20°: angle d'inclinaison des surface de friction;
 - R_{moy} : rayon moyen de la surface de friction (à relever du dessin d'ensemble) ;

2.5- Communiquer: (avec correction)

- Réaliser le dessin de définition de l'arbre de sortie 31 à l'échelle 2 :1 suivante : vue de face en coupe partielle A-A ; - Section sortie D-D.
- > Pour une nouvelle version du palan électrique à chaine, le constructeur à adapter des engrenages à dentures hélicoïdales, ainsi les arbres sont guidés par des roulements à billes à contacts obliques.

Compléter sur le dessin de conception ci-dessous :

- Le montage en "O" des roulements 50 ;
- Le montage de la roue 27 / l'arbre 25 : * L'arrêt axial à droite est réalisé par une rondelle plate + vis H M8 ;
 - * L'arrêt en rotation : conserver la solution du dessin d'ensemble ;
- Indiquer les ajustements sur : * Les porter des roulements 50 ;
 - * La portée de la roue 27.

