
Solution : étude d'un CNA à réseau R/2R

- 1. L'AO2 fonctionne en linéaire car, la sortie est uniquement rebouclée à l'entrée inverseuse.
- **2**. ε =0, donc
 - en position 1, par la loi des mailles, le potentiel en P_i est celui de la masse (car v-v+v+0).
 - En position 0, le potentiel est nul également car le point est directement relié à la masse.
- 3. Loi des mailles (et loi d'Ohm) : $U_{CNA}+R'I+\epsilon=0 \Rightarrow U_{CNA}=-R'I$
- **4.** Le courant Ii contribue ou non à la formation du courant I selon l'état de l'interrupteur Ki donc selon ai :

D'après la loi des nœuds : $I=a_3I_3+a_2I_2+a_1I_1+a_0I_0$

- **5.** $R_e=2R//2R=2R/2=R$. D'après le diviseur de tension : $U_0=U_1\frac{R}{R+R}=\frac{U_1}{2}$.
- **6.** De même : la résistance équivalente à droite de U_1 est $\{2R \text{ en parallèle avec } (R+R)\}=R$, donc $U_1=U_2/2$ et de la même façon $U_3=E/2$.
- **7.** D'après la loi d'Ohm : $I_3 = \frac{U_3}{2R} = \frac{E/2}{2R} = \frac{E}{4R}$.

De même:
$$I_2 = U2/2R = \frac{U_3}{4R} = \frac{E}{8R}$$
 $I_1 = U1/2R = \frac{U_2}{4R} = \frac{E}{16R}$ $I_0 = U0/2R = \frac{U_1}{4R} = \frac{E}{32R}$

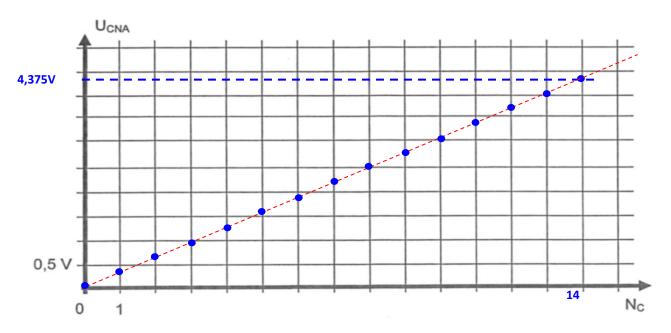
Chaîne d'information pour 2^{ème} STE

Lycée technique Acharif Al Idrissi- Safi-

Jaâfar Temouden

$$\textbf{8.} \ \ I = a_3 I_3 + a_2 I_2 + a_1 I_1 + a_0 I_0 = \frac{E}{32R} \ (8a_3 + 4a_2 + 2a_1 + a_0). \ \ Or \ \ U_{CNA} = -R'I, \ donc \ \ U_{CNA} = -R'\frac{E}{32R} (8a_3 + 4a_2 + 2a_1 + a_0).$$

9. Or
$$8a_3+4a_2+2a_1+a_0=N_C$$
, donc $U_{CNA}=-R'\frac{E}{32R}N_C$, par identification $q=-R'\frac{E}{32R}$


(=0,3125V en remplaçant par les valeurs de l'énoncé).

10. et 11. $q=U_{CNA}/N_C=4,375/14=0,3125V$, ce qui donne :

- pour $N_C=2$, $U_{CNA}=0,625V$
- pour N_C=7, U_{CNA}=2,1875V
- pour N_C=15, U_{CNA}=4,6875V

θ (en degré)	a ₃ a ₂ a ₁ a ₀	N _c (décimal)	U _{CNA} (V)
0	0000	0	0
6,06	0001	1	0,312
12,13	0010	2	<mark>0,625</mark>
18,2	0011	3	0,938
24,27	0100	4	1,250
30,33	0101	5	1,563
36,44	0110	6	1,875
42,46	0111	7	<mark>2,1875</mark>
48,53	1000	8	2,5
54,6	1001	9	2,813
60,67	1010	10	3,125
66.73	1011	11	3,438
72,8	1100	12	3,75
78,87	1101	13	4,063
84,93	1110	14	4.375
91	1111	15	<mark>4,6875</mark>

12. Il s'agit d'un ensemble de points discret alignés sur une droite passant par zéro et (14, 4,375V).

