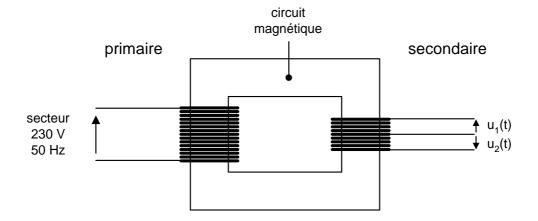
9 exercices corrigés d'Electrotechnique sur le transformateur

Exercice Transfo01: transformateur à vide

Faire le bilan de puissance du transformateur à vide.

En déduire que la puissance consommée à vide est sensiblement égale aux pertes fer.


Exercice Transfo02: courant de mise sous tension d'un transformateur

Un transformateur monophasé a les caractéristiques suivantes :

- 1- Calculer le courant primaire nominal I_{1N} et le courant secondaire nominal I_{2N} .
- 2- A la mise sous tension d'un transformateur, il se produit un courant d'appel très important (de l'ordre de 25 I_{1N}) pendant une dizaine de millisecondes. Evaluer le courant de mise sous tension.

Exercice Transfo03: transformateur à point milieu monophasé

Un transformateur à point milieu possède au secondaire deux enroulements ayant le même nombre de spires :

- 1- Quel est le rôle du circuit magnétique d'un transformateur ?
- 2- Justifier que : $u_2(t) = -u_1(t)$.
- 3- Calculer le nombre de spires des enroulements du secondaire pour que la valeur efficace des tensions $u_1(t)$ et $u_2(t)$ soit de 10 volts (le transformateur est supposé parfait).

On donne : nombre de spires du primaire : 460.

Exercice Transfo04: transformateur de distribution

Un transformateur de distribution possède les caractéristiques nominales suivantes : $S_{2N} = 25 \text{ kVA}$, $p_{Joule N} = 700 \text{ W}$ et $p_{fer} = 115 \text{ W}$.

- 1- Calculer le rendement nominal pour :
 - une charge résistive
 - une charge inductive de facteur de puissance 0,8
- 2- Calculer le rendement pour :
 - une charge résistive qui consomme la moitié du courant nominal

Exercice Transfo05: transformateur monophasé

Un transformateur monophasé a les caractéristiques suivantes :

- tension primaire nominale : $U_{1N} = 5375 \text{ V} / 50 \text{ Hz}$
- rapport du nombre de spires : $N_2/N_1 = 0.044$
- résistance de l'enroulement primaire : $R_1 = 12 \Omega$
- résistance de l'enroulement secondaire : $R_2 = 25 \text{ m}\Omega$
- inductance de fuite du primaire : $L_1 = 50 \text{ mH}$
- inductance de fuite du secondaire : $L_2 = 100 \mu H$
- 1- Calculer la tension à vide au secondaire.
- 2- Calculer la résistance des enroulements ramenée au secondaire R_S.
- 3- Calculer l'inductance de fuite ramenée au secondaire $L_{\rm S}$. En déduire la réactance de fuite $X_{\rm S}$.

Le transformateur débite dans une charge résistive $R = 1 \Omega$.

4- Calculer la tension aux bornes du secondaire U₂ et le courant qui circule dans la charge I₂.

Exercice Transfo06: transformateur de commande et de signalisation monophasé

Un transformateur de commande et de signalisation monophasé a les caractéristiques suivantes :

230 V/ 24 V 50 Hz

630 VA

11,2 kg

1- Les pertes totales à charge nominale sont de 54,8 W.

Calculer le rendement nominal du transformateur pour cos $\varphi_2 = 1$ et cos $\varphi_2 = 0.3$.

- 2- Calculer le courant nominal au secondaire I_{2N}.
- 3- Les pertes à vide (pertes fer) sont de 32,4 W.

En déduire les pertes Joule à charge nominale.

En déduire R_S, la résistance des enroulements ramenée au secondaire.

- 4- La chute de tension au secondaire pour cos $\varphi_2=0.6$ (inductif) est de 3,5 % de la tension nominale ($U_{2N}=24$ V). En déduire X_S , la réactance de fuite ramenée au secondaire.
- 5- Un court-circuit a lieu à 15 mètres du transformateur.

Le câble de ligne en cuivre a une section de 1,5 mm².

5-1- Calculer sa résistance totale R sachant que la résistivité du cuivre est : $\rho = 0.027~\Omega \cdot mm^2/m$.

5-2- Montrer que le courant de court-circuit s'écrit :
$$I_{2cc} = \frac{U_{2N}}{\sqrt{(R_S + R)^2 + X_S^2}}$$

Faire l'application numérique (on pourra prendre $R_S \approx 30 \text{ m}\Omega$ et $X_S \approx 15 \text{ m}\Omega$).

Exercice Transfo07: enroulements d'un transformateur monophasé

Rapport du nombre de spires : $N_1 / N_2 = 20$ Résistance de l'enroulement du primaire : $R_1 = 10 \ \Omega$

1- On suppose le transformateur parfait pour les courants : $\frac{I_2}{I_1} = \frac{N_1}{N_2}$

Calculer la résistance de l'enroulement du secondaire R_2 pour que les pertes Joule au secondaire soient égales aux pertes Joule au primaire.

 $R_2 =$

2- La résistance R d'un fil électrique est donnée par la relation : $R = \rho \frac{L}{S}$

Que désigne ρ ?

Que désigne L?

Que désigne S?

3- Les spires du secondaire et du primaire sont de mêmes circonférences. Calculer le rapport entre la section du fil du secondaire et la section du fil du primaire.

 $S_2 / S_1 =$

En déduire le rapport entre le diamètre du fil du secondaire et le diamètre du fil du primaire.

 $D_2 / D_1 =$

-	la masse de cuivre de l'enroulement du primaire et m ₂ la masse de cuivre de du secondaire.
Cocher la bon	ne réponse :
	$m_1 = m_2$ $m_1 > m_2$ $m_1 < m_2$

Exercice Transfo08: transformateur monophasé

Les essais d'un transformateur monophasé ont donné :

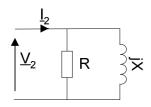
A vide : $U_1 = 220 \text{ V}$, 50 Hz (tension nominale primaire) ; $U_{2v} = 44 \text{ V}$; $P_{1v} = 80 \text{ W}$; $I_{1v} = 1 \text{ A}$.

En court-circuit : $U_{1cc} = 40 \text{ V}$; $P_{1cc} = 250 \text{ W}$; $I_{2cc} = 100 \text{ A}$ (courant nominal secondaire).

En courant continu au primaire : $I_1 = 10 \text{ A}$; $U_1 = 5 \text{ V}$.

Le transformateur est considéré comme parfait pour les courants lorsque ceux-ci ont leurs valeurs nominales.

- 1- Déterminer le rapport de transformation à vide m_v et le nombre de spires au secondaire, si l'on en compte 500 au primaire.
- 2- Calculer la résistance de l'enroulement primaire R₁.
- 3- Vérifier que l'on peut négliger les pertes par effet Joule lors de l'essai à vide (pour cela, calculer les pertes Joule au primaire).
- 4- En admettant que les pertes dans le fer sont proportionnelles au carré de la tension primaire, montrer qu'elles sont négligeables dans l'essai en court-circuit. Faire l'application numérique.
- 5- Représenter le schéma équivalent du transformateur en court-circuit vu du secondaire. En déduire les valeurs R_s et X_s caractérisant l'impédance interne.


Quels que soient les résultats obtenus précédemment, pour la suite du problème, on prendra $R_s = 0.025 \Omega$ et $X_s = 0.075 \Omega$.

Le transformateur, alimenté au primaire sous sa tension nominale, débite 100 A au secondaire avec un facteur de puissance égal à 0,9 (charge inductive).

- 6- Déterminer la tension secondaire du transformateur. En déduire la puissance délivrée au secondaire.
- 7- Déterminer la puissance absorbée au primaire (au préalable calculer les pertes globales). En déduire le facteur de puissance au primaire et le rendement.

Exercice Transfo09: transformateur monophasé

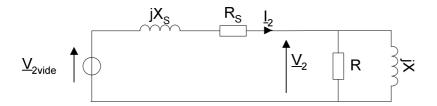
1- La charge du transformateur est :

On admet que:

$$\begin{split} Z = & \frac{V_{\rm eff}}{I_{\rm eff}} = \frac{1}{\sqrt{\frac{1}{R^2} + \frac{1}{X^2}}} \\ & \cos \phi_{\rm v/i} = \frac{1}{R} \cdot \frac{1}{\sqrt{\frac{1}{R^2} + \frac{1}{X^2}}} \end{split}$$

avec: $X = L\omega$

Calculer l'impédance Z et le facteur de puissance de la charge.


On donne : f = 50 Hz, $R = 2 \Omega$ et L = 10 mH.

2- Le schéma équivalent ramené au secondaire du transformateur est :

$$\underline{V}_{2\text{vide}} \quad \uparrow \quad \underline{V}_{2}$$

$$R_S = 80 \text{ m}\Omega$$

$$X_S = 160 \text{ m}\Omega$$

$$V_{2 \text{ vide}} = 240 \text{ V}$$

$$f = 50 \text{ Hz}$$

En charge, le schéma équivalent du circuit est donc :

Calculer:

- La tension efficace au secondaire V_2
- La chute de tension au secondaire ΔV_2
- Le courant efficace consommé par la charge I₂
- La puissance active consommée par la charge P₂

Corrigés

Exercice Transfo01: transformateur à vide

Faire le bilan de puissance du transformateur à vide.

```
P_1 = P_2 + \text{pertes Joule} + \text{pertes Fer}
A vide, la puissance fournie au secondaire est nulle : P_2 = 0
P_1 à vide = pertes Joule + pertes Fer
```

En déduire que la puissance consommée à vide est sensiblement égale aux pertes fer.

A vide, un transformateur consomme peu de courant : les pertes Joule sont donc négligeables devant les pertes Fer.

 P_1 à vide \approx pertes Fer

Exercice Transfo02: courant de mise sous tension d'un transformateur

Un transformateur monophasé a les caractéristiques suivantes :

1- Calculer le courant primaire nominal I_{1N} et le courant secondaire nominal I_{2N} .

$$I_{1N} = S_N/U_{1N} = 63/230 = 0,27 \text{ A}$$

 $I_{2N} = S_N/U_{2N} = 63/24 = 2,6 \text{ A}$

2- A la mise sous tension d'un transformateur, il se produit un courant d'appel très important (de l'ordre de $25 \, I_{1N}$) pendant une dizaine de millisecondes. Evaluer le courant de mise sous tension.

$$25 \times 0,27 = 6,8 \text{ A}$$

Exercice Transfo03: transformateur à point milieu monophasé

- 1- Le circuit magnétique d'un transformateur permet de canaliser les lignes de champ magnétique entre le primaire et le secondaire.
- 2- Les deux enroulements ayant le même nombre de spires, les deux tensions ont la même amplitude. De plus, elles sont en opposition de phase à cause de la convention de signe choisie pour les tensions : $u_2(t) = -u_1(t)$
- 3- Nombre de spires d'un des enroulements du secondaire : $460 \times (10/230) = 20$

Exercice Transfo04: transformateur de distribution

Un transformateur de distribution possède les caractéristiques nominales suivantes : $S_{2N} = 25 \text{ kVA}$, $p_{Joule N} = 700 \text{ W}$ et $p_{fer} = 115 \text{ W}$.

1- Calculer le rendement nominal pour :

- une charge résistive

```
\begin{split} &P_2 = S_2 \cos \phi_2 \\ &\text{La charge est r\'esistive : } \cos \phi_2 = 1 \\ &P_{2N} = 25000 \times 1 = 25 \text{ kW} \\ &P_1 = P_2 + \text{pertes Joule + pertes Fer} = 25000 + 700 + 115 = 25,815 \text{ kW} \\ &\text{Rendement nominal : } P_2/P_1 = 96,8 \text{ \%} \\ &\text{- une charge inductive de facteur de puissance 0,8} \\ &(25000 \times 0,8)/(25000 \times 0,8 + 700 + 115) = 96,1 \text{ \%} \end{split}
```

2- Calculer le rendement pour :

- une charge résistive qui consomme la moitié du courant nominal

```
\begin{split} P_2 &= S_2 \cos \phi_2 \\ I_2 &= I_{2N}/2 \qquad donc: \ P_2 \approx P_{2N}/2 \approx 12,5 \ kW \\ Les \ pertes \ Joule \ sont \ proportionnelles \ au \ carr\'e \ des \ courants \ (Loi \ de \ Joule). \\ 700 \times (1/2)^2 &= 175 \ W \\ (12500)/(12500 + 175 + 115) &= 97,7 \ \% \end{split}
```

Exercice Transfo05: transformateur monophasé

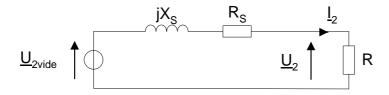
Un transformateur monophasé a les caractéristiques suivantes :

- tension primaire nominale : U_{1N} = 5375 V / 50 Hz
- rapport du nombre de spires : $N_2/N_1 = 0,044$
- résistance de l'enroulement primaire : $R_1 = 12 \Omega$
- résistance de l'enroulement secondaire : $R_2 = 25 \text{ m}\Omega$
- inductance de fuite du primaire : $L_1 = 50 \text{ mH}$
- inductance de fuite du secondaire : $L_2 = 100 \mu H$
- 1- Calculer la tension à vide au secondaire.

$$5375 \times 0.044 = 236.5 \text{ V}$$

2- Calculer la résistance des enroulements ramenée au secondaire R_S.

$$R_S = R_2 + R_1 m_v^2 = 0.025 + 12 \times 0.044^2 = 48.2 \text{ m}\Omega$$


3- Calculer l'inductance de fuite ramenée au secondaire L_S . En déduire la réactance de fuite X_S .

$$\begin{split} L_S &= L_2 + L_1 \ m_v{}^2 = 100 \cdot 10^{\text{-}6} + 50 \cdot 10^{\text{-}3} \cdot 0,044^2 = 197 \ \mu\text{H} \\ X_S &= L_S \omega = 197 \cdot 10^{\text{-}6} \cdot 2\pi \cdot 50 = 61.8 \ m\Omega \end{split}$$

Le transformateur débite dans une charge résistive $R = 1 \Omega$.

4- Calculer la tension aux bornes du secondaire U₂ et le courant qui circule dans la charge I₂.

Schéma électrique équivalent :

Impédance complexe totale : $\underline{Z} = (R_S + R) + jX_S$

Impédance totale : $Z = ((R_S+R)^2 + X_S^2)^{1/2}$

Courant au secondaire : $I_2 = U_2$ vide/Z

$$I_2 = \frac{U_{2V}}{\sqrt{(R_S + R)^2 + X_S^2}} = 225.2 \text{ A}$$

Loi d'Ohm : $U_2 = RI_2 = 225,2$ volts

Autre méthode:

 $\Delta U_2 = U_{2V} - U_2 \approx (R_S \cos \phi_2 + X_S \sin \phi_2)I_2$

La charge est résistive : $\cos \varphi_2 = 1$

 $\begin{array}{ll} \mbox{D'où} & \Delta U_2 \approx R_S I_2 & (1) \\ \mbox{D'autre part :} & U_2 = R I_2 & (2) \end{array}$

(1) (2) $I_2 \approx U_{2V}/(R_S + R) \approx 225,6 \text{ A}$

 $U_2 \approx 225,6 \text{ V}$

Exercice Transfo06: transformateur de commande et de signalisation monophasé

1- Calculer le rendement nominal du transformateur pour cos $\varphi_2 = 1$ et cos $\varphi_2 = 0,3$.

$$(630 \times 1)/(630 \times 1 + 54.8) = 92 \%$$

 $(630 \times 0.3)/(630 \times 0.3 + 54.8) = 77.5 \%$

2- Calculer le courant nominal au secondaire I_{2N}.

$$630/24 = 26.25 \text{ A}$$

3- Les pertes à vide (pertes fer) sont de 32,4 W. En déduire les pertes Joule à charge nominale.

Bilan de puissance :
$$54.8 - 32.4 = 22.4 \text{ W}$$

En déduire R_S, la résistance des enroulements ramenée au secondaire.

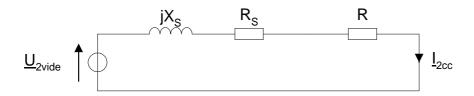
Loi de Joule :
$$22,4 / 26,25^2 = 32,5 \text{ m}\Omega$$

4- La chute de tension au secondaire pour cos ϕ_2 = 0,6 (inductif) est de 3,5 % de la tension nominale (U_{2N} = 24 V). En déduire X_S , la réactance de fuite ramenée au secondaire.

Chute de tension au secondaire :
$$\Delta U_2$$
 = 0,035×24 = 0,84 V ΔU_2 = (R_S cos ϕ_2 + X_S sin ϕ_2) I_{2N}

$$X_S = (0.84/26.25 - 0.0325 \times 0.6) \ / \ 0.8 = 15.6 \ m\Omega$$

5- Un court-circuit a lieu à 15 m du transformateur.


Le câble de ligne en cuivre a une section de 1,5 mm².

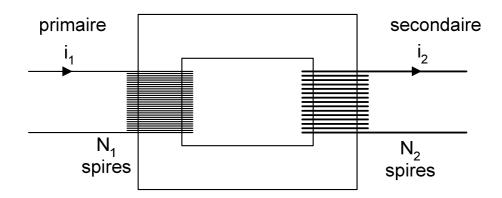
5-1- Calculer sa résistance totale R sachant que la résistivité du cuivre est : $\rho = 0.027 \ \Omega \cdot mm^2/m$.

$$R = \rho L/S = 0.027 \times 2 \times 15/1.5 = 540 \text{ m}\Omega$$

4-5-2- Montrer que le courant de court-circuit s'écrit :
$$I_{2cc} = \frac{U_{2N}}{\sqrt{(R_S + R)^2 + X_S^2}}$$

Schéma électrique équivalent :

Impédance complexe totale : $\underline{Z} = (R_S + R) + jX_S$


Impédance totale : $Z = ((R_S+R)^2 + X_S^2)^{1/2}$

Courant de court-circuit : $U_{2 \text{ vide}}/Z \approx U_{2N}/Z = U_{2 \text{ vide}}/((R_S+R)^2 + X_S^2)^{1/2}$

Faire l'application numérique.

$$Z = ((0,0325 + 0,540)^2 + 0,0156^2)^{1/2} = 573 \ m\Omega$$

$$24/0,573 = 42 \ amp\`res$$

Exercice Transfo07: enroulements d'un transformateur monophasé

Rapport du nombre de spires : $N_1/N_2 = 20$ Résistance de l'enroulement du primaire : $R_1 = 10 \ \Omega$

1- On suppose le transformateur parfait pour les courants : $\frac{I_2}{I_1} = \frac{N_1}{N_2}$

Calculer la résistance de l'enroulement du secondaire R_2 pour que les pertes Joule au secondaire soient égales aux pertes Joule au primaire.

$$R_{1}I_{1}^{2} = R_{2}I_{2}^{2}$$

$$R_{2} = \frac{R_{1}}{\left(\frac{N_{1}}{N_{2}}\right)^{2}} = \frac{10}{20^{2}} = 25 \text{ m}\Omega$$

2- La résistance R d'un fil électrique est donnée par la relation : $R = \rho \frac{L}{S}$

Que désigne ρ?	résistivité électrique du matériau (en Ω·m)
Que désigne L?	longueur du fil (en m)
Que désigne S ?	section du fil (en m²)

3- Les spires du secondaire et du primaire sont de mêmes circonférences. Calculer le rapport entre la section du fil du secondaire et la section du fil du primaire.

$$R_{1} = \rho \frac{L_{1}}{S_{1}} = \rho \frac{N_{1}L}{S_{1}}$$

$$R_{2} = \rho \frac{N_{2}L}{S_{2}}$$

$$L : longueur moyenne d'une spire.$$

$$\frac{S_{2}}{S_{1}} = \frac{N_{2}}{N_{1}} \frac{R_{1}}{R_{2}} = \frac{N_{1}}{N_{2}} = 20$$

En déduire le rapport entre le diamètre du fil du secondaire et le diamètre du fil du primaire.

$$\frac{S_1 = \pi D_1^2/4}{D_1} = \sqrt{\frac{S_2}{S_1}} = \sqrt{\frac{N_1}{N_2}} = \sqrt{20} = 4,47$$

4- On note m_1 la masse de cuivre de l'enroulement du primaire et m_2 la masse de cuivre de l'enroulement du secondaire.

Cocher la bonne réponse :

 \square $m_1 < m_2$

(En effet:

 $\label{eq:Volume de cuivre du primaire:} V_1 = L_1S_1 = N_1LS_1$ Masse de cuivre du primaire : $m_1 = \rho V_1 = \rho \ N_1LS_1$ Masse de cuivre du secondaire : $m_2 = \rho V_2 = \rho \ N_2LS_2$

$$\frac{m_1}{m_2} = \frac{N_1}{N_2} \frac{S_1}{S_2} = 1$$

Exercice Transfo08: transformateur monophasé

Les essais d'un transformateur monophasé ont donné :

A vide : $U_1 = 220 \text{ V}$, 50 Hz (tension nominale primaire) ; $U_{2v} = 44 \text{ V}$; $P_{1v} = 80 \text{ W}$; $I_{1v} = 1 \text{ A}$.

En court-circuit : $U_{1cc} = 40 \text{ V}$; $P_{1cc} = 250 \text{ W}$; $I_{2cc} = 100 \text{ A}$ (courant nominal secondaire).

En courant continu au primaire : $I_1 = 10 \text{ A}$; $U_1 = 5 \text{ V}$.

Le transformateur est considéré comme parfait pour les courants lorsque ceux-ci ont leurs valeurs nominales.

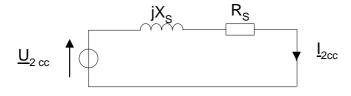
1- Déterminer le rapport de transformation à vide m_v et le nombre de spires au secondaire, si l'on en compte 500 au primaire.

$$m_v = 44 / 220 = 0,2$$

 $N_2 = 500 \times 0,2 = 100$ spires

2- Calculer la résistance de l'enroulement primaire R₁.

$$R_1 = 5 / 10 = 0.5 \Omega$$


3- Vérifier que l'on peut négliger les pertes par effet Joule lors de l'essai à vide (pour cela, calculer les pertes Joule au primaire).

Pertes Joule au primaire = $R_1 I_{1v}^2 = 0.5 W << 80 W$ donc négligeables.

4- En admettant que les pertes dans le fer sont proportionnelles au carré de la tension primaire, montrer qu'elles sont négligeables dans l'essai en court-circuit. Faire l'application numérique.

$$80 \times (40 / 220)^2 = 2,6 \text{ W}$$

2,6 W << 250 W donc négligeables.

5- Représenter le schéma équivalent du transformateur en court-circuit vu du secondaire. En déduire les valeurs R_s et X_s caractérisant l'impédance interne.

$$\begin{split} R_s &= 250 \: / \: 100^2 = 0,\!025 \: \Omega \\ Z_s &= m_v \: U_{1cc} \: / \: I_{2cc} = 0,\!080 \: \Omega \end{split}$$

$$Z_{S} = \sqrt{R_{S}^{2} + X_{S}^{2}}$$

$$X_{S} = \sqrt{Z_{S}^{2} - R_{S}^{2}} = 0,076 \Omega$$

Quels que soient les résultats obtenus précédemment, pour la suite du problème, on prendra $R_s = 0.025~\Omega$ et $X_s = 0.075~\Omega$.

Le transformateur, alimenté au primaire sous sa tension nominale, débite 100 A au secondaire avec un facteur de puissance égal à 0,9 (charge inductive).

6- Déterminer la tension secondaire du transformateur. En déduire la puissance délivrée au secondaire.

$$\begin{split} &\Delta U_2 = (R_S \cos \phi_2 + X_S \sin \phi_2) I_2 = 5,5 \ V \\ &U_2 = 44 \text{ - } 5,5 = 38,5 \ V \\ &P_2 = U_2 \ I_2 \cos \phi_2 = 3460 \ W \end{split}$$

7- Déterminer la puissance absorbée au primaire (au préalable calculer les pertes globales). En déduire le facteur de puissance au primaire et le rendement.

Pertes globales = 80 + 250 = 330 W

 $P_1 = 3460 + 330 = 3790 \text{ W}$

Rendement : 3460 / 3790 = 91 % $P_1 = U_1 I_1 \cos \phi_1 = U_1 m_v I_2 \cos \phi_1$

D'où: $\cos \phi_1 = 0.86$

Exercice Transfo09: transformateur monophasé

1- Calculer l'impédance Z et le facteur de puissance de la charge.

$$Z = 1,6871$$
 ohm $\cos \varphi_2 = 0,8436$

2- Calculer:

- La tension efficace au secondaire V₂
- La chute de tension au secondaire ΔV_2
- Le courant efficace consommé par la charge I₂
- La puissance active consommée par la charge P₂

$$\begin{cases} V_{2\text{vide}} - V_2 \approx (R_8 \cos \phi_2 + X_8 \sin \phi_2) I_2 \\ V_2 = Z I_2 \end{cases}$$

$$I_2 \approx \frac{V_{2\text{vide}}}{R_8 \cos \phi_2 + X_8 \sin \phi_2 + Z} \approx \frac{240}{0,080 \cdot 0,8436 + 0,160 \cdot 0,5370 + 1,6871} = 130,4 \text{ A}$$

$$V_2 = Z I_2 \approx 220,0 \text{ V}$$

$$\Delta V_2 = 240 - 220,0 \approx 20,0 \text{ V}$$

$$P_2 = V_2 I_2 \cos \phi_2 \approx 220,0 \cdot 130,4 \cdot 0,8436 = 24,2 \text{ kW}$$

Autre méthode (calcul exact):

$$\begin{split} \underline{Z}_{totale} &= R_S + jX_S + \frac{jX \cdot R}{R + jX} \text{ avec } X = L\omega = 3,14 \, \Omega \\ &= \left(R_S + \frac{RX^2}{R^2 + X^2} \right) + j \left(X_S + \frac{R^2X}{R^2 + X^2} \right) \\ I_2 &= \frac{V_{2vide}}{Z_{totale}} = \frac{V_{2vide}}{\sqrt{\left(R_S + \frac{RX^2}{R^2 + X^2} \right)^2 + \left(X_S + \frac{R^2X}{R^2 + X^2} \right)^2}} = \frac{240}{1,8428} = 130,2 \, A \\ V_2 &= 1,6871 \times 130,2 = 219,7 \, V \\ \Delta V_2 &= 240 - 219,7 \approx 20,3 \, V \\ P_2 &= 219,7 \cdot 130,2 \cdot 0,8436 = 24,1 \, \, kW \end{split}$$