Correction de l'examen de baccalauréat session normale 2017 Section internationale option « française» Option science de la vie et de la terre

CHIMIE

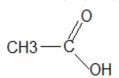
Partie 1 : Synthèse de l'huile de menthe

1- Synthèse de l'éthanoate de menthyle en laboratoire

1-1- les deux caractéristiques de la réaction d'estérification :

lente, limitée (et athermique).

1-2- La formule semi-développée de l'acide carboxylique (A) :



1-3- Le rôle de l'acide sulfurique :

Catalyseur, il permet d'atteindre plus rapidement l'état final d'équilibre.

2- Dosage de l'acide carboxylique

2-1- Equation de la réaction du dosage :

$$CH_{3}COOH_{(aq)} + HO_{(aq)}^{-} \rightarrow CH_{3}COO_{(aq)}^{-} + H_{2}O_{(l)}$$

2-2- Montrons que $n_A = 6.8.10^{-2} \ mol$:

A l'équivalence on a : $n_A=n_{ajout\acute{e}}(HO^-)$ avec $n_{\ddot{a}\dot{b}\dot{b}\dot{b}\dot{b}\dot{b}}(HO^-)=C_B.V_{BE}$

Donc: $n_A = C_B \cdot V_{BE}$

A.N: $n_A = 1,0 \times 68 \times 10^{-3} = 6,8.10^{-2} \text{ mol}$

1-3- La valeur de la quantité de matière de l'ester formée dans le tube1:

Tableau d'avancement :

Equation de la réaction		$RCOOH_{(l)} + C_{10}H_{19}OH_{(l)} \rightleftharpoons CH_3COOC_{10}H_{19(l)} + H_2O_{(l)}$			
Etat du système	Avancement	Quantité de matière en <i>mol</i>			
Etat initial	0	n_1	n_2	0	0
Au cours de la transformation	х	$n_1 - x$	$n_2 - x$	х	x
Etat final	x_f	$n_1 - x_f$	$n_2 - x_f$	x_f	x_f

D'après le tableau d'avancement :

La quantité de matière de l'acide restante : $n_A = n_1 - x \implies x = n_1 - n_A$

La quantité de matière de l'ester formé est : n(E) = x

$$n(E) = n_1 - n_A$$

AN:

$$n(E) = 0, 1 - 6, 8.10^{-2} = 3, 2.10^{-2} mol$$

3- Suivi temporel de la quantité de matière de menthyle

3-1- Calcul de la vitesse volumique de la réaction aux deux instants $t_1=12\ min$ et $t_2=32\ min$:

D'après la définition de la vitesse volumique de la réaction : $V(t) = \frac{1}{V} \cdot \frac{dx}{dt}$

- A l'instant $t_1 = 12 min$:

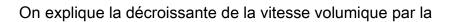
$$\vee \left(t_1 \right) = \frac{1}{V}. \left(\frac{\Delta x}{\Delta t} \right)_{t_1} = \frac{1}{23 \times 10^{-3}} \times \left(\frac{0,05-0,04}{8-0} \right)_{t_1}$$

$$V(t_1) = 5.43.10^{-2} \ mol. L^{-1}. min^{-1}$$

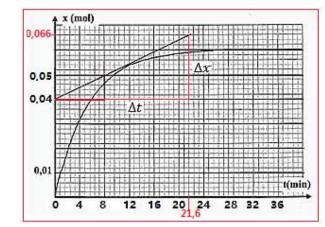
- A l'instant $t_1 = 32 min$:

A cet instant la tangente à la courbe est horizontale, le coefficient directeur est nul d'où la vitesse est nulle.

$$V\left(t_{2}\right) =0$$



diminution de la concentration des réactifs au cours de la réaction.



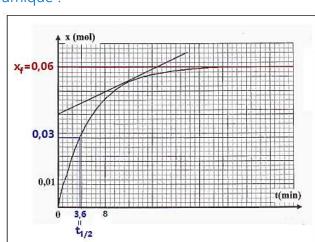
3-2- Facteur cinétique qui permet d'augmenter la vitesse volumique :

L'augmentation de la température du système chimique permet d'augmenter la vitesse de la réaction.

a- de la valeur de l'avancement final :

$$x_f = 6.10^{-2} \ mol$$

b- le temps de demi-réaction :



A l'instant $t_{1/2}$ on a :

$$x(t_{1/2}) = \frac{x_f}{2} = \frac{0.06}{2} = 0.03 \text{ min}$$

Graphiquement on a : $t_{1/2} = 3.6 min$

3-4- la valeur du rendement :

$$r = \frac{n_{exp}}{n_{th}} = \frac{x_f}{x_{max}}$$

D'après le tableau d'avancement : $x_{max} = n_1 = 0,1 \ mol$

$$r = \frac{0.06}{0.1} = 0.6 \implies r = 60\%$$

Partie 2 : Réaction entre deux couples (acide / base)

1- L'équation de la réaction qui se produit entre l'acide éthanoïque et l'ion benzoate :

$$CH_{3}CO_{2}H_{(aq)} + C_{6}H_{5}CO_{2}^{-}{}_{(aq)} \xrightarrow{(1)} CH_{3}CO_{2}^{-}{}_{(aq)} + C_{6}H_{5}CO_{2}H_{(aq)}$$

2- Montrons l'expression de la constante d'équilibre *K* :

$$K = \frac{[CH_3CO_2^-]_{eq}.[C_6H_5CO_2H]_{eq}}{[CH_3CO_2H]_{eq}.[C_6H_5CO_2^-]_{eq}}$$

On sait :
$$K_{A1} = \frac{[CH_3CO_2^-]_{eq}.[H_3O^+]_{eq}}{[CH_3CO_2H]_{eq}}$$
 et $K_{A2} = \frac{[C_6H_5CO_2^-]_{eq}[H_3O^+]_{eq}}{[C_6H_5CO_2H]_{eq}}$

$$K = \underbrace{\frac{[CH_3CO_2^-]_{eq}.[H_3O^+]_{eq}}{[CH_3CO_2H]_{eq}}}_{=K_{A1}} \cdot \underbrace{\frac{[C_6H_5CO_2H]_{eq}}{[C_6H_5CO_2^-]_{eq}[H_3O^+]_{eq}}}_{=\frac{1}{K_{A2}}} = K_{A1}.\frac{1}{K_{A2}}$$

$$K = \frac{K_{A1}}{K_{A2}}$$

A.N:
$$K = \frac{1,8.10^{-5}}{6.3.110^{-5}} = 0,29$$

3- Sens d'évolution du système chimique:

Puisque $Q_{r,i} = 1$ donc $Q_{r,i} > K$, d'après le critère d'évolution spontanée, le système chimique évolue dans le sens inverse de l'équation de la réaction (sens 2).

PHYSIQUE

Exercice 1: Ondes lumineuses

1- Propagation de la lumière à travers un prisme

1-1-

1-1-1- La fréquence de la lumière rouge est : b

On a
$$c = \lambda_{0R}$$
. ν_R d'où $\nu_R = \frac{c}{\lambda_{0R}}$ A.N: $\nu_R = \frac{3.10^8}{768.10^{-9}} = 3,91.0^{14} \, Hz$

1-1-2- La vitesse de propagation de la lumière rouge dans le verre est : c

On a
$$n_R = \frac{c}{v_R}$$
 d'où $v_R = \frac{c}{n_R}$ A.N: $v_R = \frac{3.10^8}{1,618} = 1,85.10^8 \text{ m. s}^{-1}$

1-2- Propriété du verre:

On constate que $V_V \neq V_R$ donc les ondes lumineuses de différentes fréquences ne se propagent pas à la même vitesse, on dit que le verre est un milieu dispersif.

2- Propagation de la lumière à travers une fente

La valeur de la longueur d'onde est b.

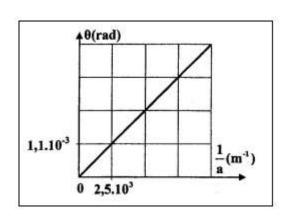
La fonction $\theta = f(t)$ est une fonction linéaire son équation

s'écrit
$$\theta=\lambda.\frac{1}{a}$$
 avec λ le coefficient directeur ; $\lambda=\frac{\Delta\theta}{\Delta\left(\frac{1}{a}\right)}=$

$$\frac{1,1.10^{-0}}{2,5.10^{3}-0}$$

$$\lambda = 4,4.10^{-7} \ m = 440.10^{-9} \ m$$

$$\lambda = 440 \ nm$$



Exercice 2 : Circuit RLC série

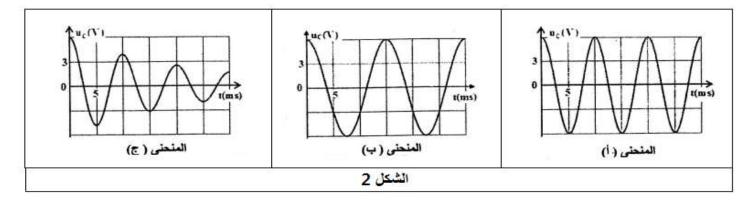
1- la valeur de l'énergie électrique maximale $E_{e,max}$:

$$\xi_{e,max} = \frac{1}{2}C.U_{C,max}^{2} = \frac{1}{2}.C.U_{Cmax}.U_{Cmax}$$

$$\begin{cases} U_{C,max} = E \\ Q_{max} = C.U_{C,max} \end{cases} \implies \xi_{e,max} = \frac{1}{2}.C.U_{Cmax}.U_{Cmax} \implies \xi_{e,max} = \frac{1}{2}.Q_{max}.E$$

$$\xi_{e,max} = \frac{1}{2} \times 1,32.10^{-4} \times 6 = 3,96.10^{-4} J$$

2-



2-1- Noms des régimes d'oscillations :

La courbe (1) → régime périodique

La courbe (2) \rightarrow régime pseudopériodique

2-2- Montrons que la courbe (1) correspond à la bobine b_2 :

La résistance des deux bobines b_1 et b_2 est nul (r=0), leur régime est périodique.

Selon l'expression de la période propre $T_0=2\pi\sqrt{L.\,C}\,$, plus que la valeur de L augmente plus que la valeur de T_0 augmente.

Puisque $L_1=260~mH>L_2=115~mH$ donc $T_{01}>T_{02}$, on déduit que la courbe (1) correspond à la bobine b_2 .

2-3- Vérification de la valeur de C:

On:
$$T=2\pi\sqrt{L_2.\,\mathcal{C}}$$
 donc: $T^2=4\pi^2.\,L_2.\,\mathcal{C}$

$$C = \frac{T^2}{4\pi^2 \cdot L_2}$$

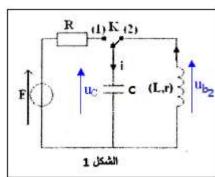
A.N:
$$C = \frac{(10.10^{-3})^2}{4 \times 10 \times 115.10^{-3}} \implies C = 2,2.10^{-5} F$$

3-

3-1- L'équation différentielle que vérifie la tension $u_c(t)$:

D'après la loi d'additivité des tensions : $u_{b_2} + u_c = 0$

$$\begin{aligned} u_{b_2} &= L_2.\frac{di}{dt} \\ i &= \frac{dq}{dt} = C.\frac{du_C}{dt} \implies \frac{di}{dt} = \frac{d}{dt} \left(C.\frac{du_C}{dt} \right) = C.\frac{d^2u_C}{dt^2} \\ L_2.C.\frac{d^2u_C}{dt^2} + u_c &= 0 \implies \frac{d^2u_C}{dt^2} + \frac{1}{L_2.C}.u_c = 0 \end{aligned}$$



3-2- La solution de l'équation différentielle s'écrit : $u_c(t) = U_{c,max}.cos\left(\frac{2\pi}{T_0}.t + \varphi\right)$

3-2-1- L'expression numérique de la tension $u_c(t)$:

On utilisant la courbe (a) on obtient :

$$U_{Cmax} = 6 V$$
 ; $T_0 = 10 ms$

Détermination de φ

$$\begin{cases} u_C(0) = U_{Cmax} \\ u_C(0) = U_{Cmax} \cdot \cos \varphi \end{cases} \Rightarrow U_{Cmax} \cdot \cos \varphi = U_{Cmax}$$

$$cos\varphi = 1 \implies \varphi = 0$$



La solution de l'équation différentielle s'écrit : $u_c(t) = 6 \cos\left(\frac{2\pi}{10.10^{-3}}.t + 0\right)$

$$u_c(t) = 6\cos(200\pi t)$$

3-2-2- L'énergie totale du circuit LC :

L'énergie totale du circuit LC se conserve on a : $E_T = E_e + E_m$

à t=0 l'énergie totale s'écrit : $E_T = E_{e max} = \frac{1}{2} C. U_{Cmax}^2$

A.N:
$$E_T = \frac{1}{2} \times 2, 2 \times 10^{-5} \times 6^2 = 3,96.10^{-4} J$$

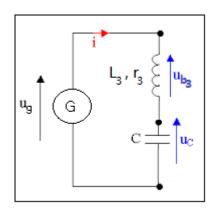
4-1- Détermination de la valeur de k :

D'après la loi d'additivité des tensions :

$$u_{b_3} + u_c = u_g \implies L_3 \cdot \frac{di}{dt} + r_3 \cdot i(t) + u_c = k \cdot i(t)$$

$$\implies L_3 \cdot \frac{di}{dt} + (r_3 - k) \cdot i(t) + u_c = 0$$

$$\begin{split} L_3. \, C. \frac{d^2 u_C}{dt^2} + (r_3 - k). \, C. \frac{du_C}{dt} + u_C &= 0 \\ \Rightarrow \frac{d^2 u_C}{dt^2} + \frac{(r_3 - k)}{L_3}. \frac{du_C}{dt} + \frac{1}{L_3. \, C}. \, u_C &= 0 \end{split}$$



Pour avoir des oscillations électriques sinusoïdales il faut $\frac{(r_3-k)}{L_3}=0 \implies r_3-k=0$

$$k = r_3 = 10 \Omega$$

4-2- Déduction de la valeur de L_3 :

On a:

$$T_3 = T_1 = T$$

$$\begin{cases} T_1 = 2\pi\sqrt{L_1.C} \\ T_3 = 2\pi\sqrt{L_3.C} \end{cases} \Rightarrow \sqrt{L_3.C} = \sqrt{L_1.C} \Rightarrow \mathbf{L_3} = \mathbf{L_1} = \mathbf{115} \ \mathbf{mH}$$

Remarque on peut utiliser l'expression de la période propre :

$$T = 2\pi\sqrt{L_3.C} \implies T^2 = 4\pi^2.L_3.C \implies L_3 = \frac{T_{01}^2}{4\pi^2.C}$$

A.N:
$$L_3 = \frac{(10.10^{-3})^2}{4.\pi^2 \times 2.2.10^{-5}} = 0,115 H \implies L_3 = 115 mH$$

Exercice 3: mouvement d'un solide

1-Etude du mouvement d'un solide sur un plan horizontal

1-1-

1-1-1- Equation différentielle :

Système étudié : {solide (s)}

Le solide est soumis à son poids \vec{P} ; à la réaction \vec{R} et à la force motrice \vec{F} .

On considère le repère $(0, \vec{\iota})$ lié à la terre comme galiléen, on applique la deuxième loi de Newton :

$$\vec{P} + \vec{F} + \vec{R} = m.\vec{a}_G \implies \vec{P} + \vec{F} + \vec{R}_N + \vec{f} = m.\vec{a}_G$$

Projection sur l'axe Ox:

$$0 + F - f + 0 = m. a_x \implies a_x = \frac{F - f}{m}$$

$$\frac{d^2x}{dt^2} = \frac{F - f}{m}$$

1-1-2- Détermination de la valeur de l'accélération a_1 :

L'accélération est constante $(a_1=cte)$; l'équation de vitesse s'écrit : $V(t)=a_1.t+V_0$ avec $V_0=0$.

A la position A l'expression de la vitesse s'écrits : $V_A = a_1 \cdot t_A$

$$a_1 = \frac{\vee_A}{t_A}$$

$$a_1 = \frac{5}{2} = 2, 5 m. s^{-2}$$

1-2-1- Montrons que la valeur de l'accélération $a_2 = -2 \ m. \ s^{-2}$:

L'équation de la vitesse entre A et B s'écrit : $V(t) = a_2 \cdot t + V_0$ avec $V_0 = V_A$ donc : $V(t) = a_2 \cdot t + V_A$

Au point B on écrit : $V_B = a_2 \cdot t_B + V_A$ avec $V_B = 0$ (le corps s'arrête en B)

$$a_2.t_B + V_A = 0$$

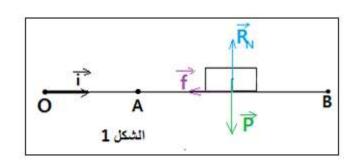
$$a_2 = -\frac{\vee_A}{t_B}$$

$$a_2 = -\frac{5}{2.5} = -2m. \, s^{-2}$$

1-2-1- Déduction de l'intensité de la force de frottement \vec{f} :

La force motrice est nulle entre A et B, l'expression de l'accélération est :

 $a_2 = \frac{F - f}{m}$ avec F = 0 on obtient : $a_2 = -\frac{f}{m}$



$$f = -m.a_2$$

A.N:

$$f = -0.4 \times (-2) = 0.8 N$$

1-3- Calcul de la force motrice :

D'après la question 1-1-1- l'expression de l'accélération est : $a_1 = \frac{F-f}{m}$ donc : F-f = m. a_1

$$F = m.a_1 + f$$

A.N:

$$F = 0, 4 \times 2, 5 + 0, 8 = 1, 8 N$$

2- Etude du movement d'un oscillateur

2-1- La détermination graphique de T_0 et X_m

D'après la figure 3 on a :

La période propre : $T_0 = 1s$

L'amplitude : $X_m = 5cm = 5.10^{-2} m$

Calcul de K:

L'expression de la période propre :

$$T_0 = 2\pi \sqrt{\frac{m}{K}} \implies T_0^2 = 4\pi^2 \cdot \frac{m}{K}$$

$$K=4\pi^2.\frac{m}{T_0^2}$$

A.N:
$$K = 4 \times 10 \times \frac{0.4}{12} = 16 \text{ N. } m^{-1}$$

2-2- le travail de la force de rappel entre les instants $t_0=0$ et $t_1=\frac{T_0}{4}$:

$$W_{t_0 \to t_1}(\vec{F}) = -\Delta E_{Pe}$$

$$W_{t_0 \to t_1}(\vec{F}) = -\left(E_{pe}\left(\frac{T_0}{4}\right) - E_{pe}(0)\right)$$

$$W_{t_0 \to t_1}(\overrightarrow{F}) = E_{pe}(0) - E_{pe}\left(\frac{T_0}{4}\right)$$

A l'intant $t_0 = 0$ d'après le graphe x = f(t) : x(0) = 0 donc : $E_{pe}(0) = 0$

A l'intant $t_1 = \frac{T_0}{4}$ d'après le graphe x = f(t) : $x\left(\frac{T_0}{4}\right) = x(0.25s) = X_m = 5.10^{-2} \ m$ donc : $E_{pe}\left(\frac{T_0}{4}\right) = \frac{1}{2}K.X_m^2$

$$E_{pe}\left(\frac{T_0}{4}\right) = \frac{1}{2} \times 16 \times (5.10^{-2})^2 = 0.02 J$$

$$W_{t_0 \to t_1}(\vec{F}) = 0 - 0,02 = -2.10^{-2} J$$

2-3- Détermination de V_0 :

La conservation de l'énergie mécanique permet d'écrire :

$$E_m = E_c + E_{pe}$$

$$E_m = E_{Cmax} = E_{pe max}$$

$$\frac{1}{2}m \vee_{max}^2 = \frac{1}{2}K.X_m^2$$

Avec:
$$V_0 = V_{max}$$

$$V_0^2 = \frac{K}{m} \cdot X_m^2$$

$$\vee_0 = X_m \cdot \sqrt{\frac{K}{m}}$$

$$V_0 = 5.10^{-2} \times \sqrt{\frac{16}{0.4}} = 0.316$$

$$\forall_0 \approx 0,32 \ m. \ s^{-1}$$