ن	ورزازا	:	النيابــــة	محمد الحيان	:	الأسئاذ	المملكة المغربية
نان	3 ساء	:	مدة الانجاز	الرياضيــــــات	:	اطادة	وزارة التربية الوسانية والتعايم العالي وتكويات الأمار والبحاث العامي
	7	:	اطعامـــــــــــــــــــــــــــــــــــ	الثانية بكالوربا علوم فيزيائية الثانية بكالوريا علوم الحياة والأرض	:	الشعبة	الامنحان النجريبي للبكالوريك 2008

<u> 3,5 ن النمر ن ال</u>

.
$$\forall x \in \mathbb{R} - \{-1\}$$
 : $\frac{2x^2 + 3x + 2}{x + 1} = 2x + 1 + \frac{1}{x + 1}$: 1

$$I=\int_0^1 \left(rac{2x^2+3x+2}{x+1}
ight) dx$$
 : ب- استنتج قیمهٔ التکامل

$$J=\int_0^1 xe^{-x}dx$$
 : باستعمال المكاملة بالأجزاء ، أحسب التكامل التالي : 2

$$K = \int_{\frac{1}{2}}^{e} \frac{1}{x} |\ln(x)| dx$$
 : أحسب التكامل : 3

6 نقط اللمربين الثانيين:

1

0,75

0,5

1

1

1

0,5

$$P\left(z\right)=z^3-\left(8+3i\right)z^2+\left(25+24i\right)z-75i$$
 : نضع : گل من المجموعة $\mathbb C$ ، نضع

$$(E)$$
 : $z^2 - 8z + 25 = 0$: المعادلة التالية : 0,75

ين أن المعادلة
$$P\left(z\right)=0$$
 تقبل حلا تخيليا و مرفا يجب تحديده.

$$\forall z \in \mathbb{C}$$
 : $P(z) = (z-3i)(z^2+az+b)$: عبد العددين الحقيقيين a و d بحيث : a عبد a عبد a عبد a عبد a

لا يعتبر في المستوى العقدي المنسوب إلى معلم متعامد ممنظم
$$(O,\overrightarrow{u},\overrightarrow{v})$$
 ، النقط A و B و D التي ألحاقها على O

.
$$z_D=4-3i$$
 و $z_C=3i$ و $z_B=4+3i$ و $z_A=-1+2i$ و التوالي هي :

$$D_{\, ext{.}} C_{\, ext{.}}$$
اً۔ مثل النقط $A_{\, ext{.}}$

$$\frac{z_C - z_B}{z_D - z_B} = -\frac{2}{3}i$$
 و أن $\frac{z_C - z_A}{z_D - z_A} = \frac{1}{5}i$ ين أن $\frac{z_C - z_A}{z_D - z_A} = \frac{1}{5}i$

ACD و ACD . ACD و ACD

د- بين أن النقط A و B و C و D تنتمى إلى دائرة Γ محددا شعاعها ولحق مركزها.

. t صورة النقطة C التي متجهتها \overline{AD} . حدد لحق النقطة E صورة النقطة C بالإزاحة \overline{AD}

الدالة العددية المعرفة على $\mathbb R$ بما يلي :

$$\begin{cases} f(x) = \ln(1-x^3) & ; x < 0 \\ f(x) = 4x\sqrt{x} - 3x^2 & ; x \ge 0 \end{cases}$$

وليكن (\mathscr{C}_f) المنحنى الممثل للدالة f في المستوى \mathscr{S} المنسوب إلى معلم متعامد ممنظم (\mathscr{C}_f) .

 \cdot . أ - بين أن f متصلة في النقطة \cdot . 1

0,5

1

1,5

1

0,5

1

0,5

0,75

0,75

1

- $(\lim_{x\to 0}\frac{\ln\left(1+t\right)}{t}=1:$ بين أن الدالة f قابلة للإشتقاق في النقطة 0 . 0 نذكر بأن
- [0,1] ، وتزايدية على المجالين [0,1] .
 - . $\lim_{x \to +\infty} f(x)$ e $\lim_{x \to -\infty} f(x)$: 3

.
$$\forall x \in]-\infty, 0[$$
 : $\frac{f(x)}{x} = \frac{3\ln(-x)}{x} + \frac{\ln(1-x^{-3})}{x}$: ب- تحقق من أن

- (\mathscr{C}_f) . الفرعين اللانهائيين للمنحنى
 - (\mathscr{C}_f) . أنشئ المنحنى (\mathscr{C}_f) .
- . Let f about f . Let f about f . Let f about f . Let f . Let f and f is a section . Let f and f is a section f . Let f and f is a section f . Let f and f is a section f . Let f is a section f and f is a section f .
 - نعتبر المتتالية العددية $(u_n)_{n\in\mathbb{N}}$ المعرفة بما يلي : 6.

$$\begin{cases} u_0 = \frac{4}{9} \\ u_{n+1} = 4u_n \sqrt{u_n} - 3u_n^2 \quad ; \quad n \in \mathbb{N} \end{cases}$$

- . $\forall n \in \mathbb{N}$: $\frac{4}{9} \le u_n \le 1$: أ- بين بالترجع أن
 - . بين أن المتتالية $\left(u_{n}\right)_{n\in\mathbb{N}}$ تزايدية
- جـ استنتج أن المتتالية $\left(u_{n}\right)_{n\in\mathbb{N}}$ متقاربة ، ثم أحسب نهايتها.