Prof: IDRISSI Abdessamad

Géométrie dans l'espace (serie n°1)

2^{ème} Année Bac

Exercice 1:

Dans l'espace muni d'un repère orthonormé directe $(o,\vec{i},\vec{j},\vec{k})$, on considère les points A(0,1,1), B(-2,1,-1), C(0,2,1) et M(x,y,z).

- ① a Calculer $\overrightarrow{AM}.\overrightarrow{BM}$.
 - b Déduire que l'ensemble des points M(x,y,z) tel que : $\overrightarrow{AM}.\overrightarrow{BM}=3$ est une sphère(S), puis déterminer le centre Ω et le rayon R de la sphère(S).
- ② a Déterminer les coordonnés du vecteur $\overrightarrow{AB} \wedge \overrightarrow{AC}$. En déduire que les points A, B et C ne sont pas alignés.
 - b Déterminer l'équation cartésienne du plan (ABC).
- - b Déduire l'intersection du plan (ABC) et la sphère(S) .

🖎 Exercice 2 :

L'espace muni d'un repère orthonormé directe $\left(\vec{O,i,j,k}\right)$,.

- ① On considère la sphère (S) de centre $\Omega(1,-3,2)$ et de rayan R=3 . Déterminer l'équation cartésienne de la sphère (S) .
- ② On considère la droite (Δ) définie par : (Δ) : $\begin{cases} x = 1 + 2t \\ y = -3 2t \\ z = 2 + t \end{cases}$
 - a Montrer que la droite (Δ) coupe la sphère (S) en deux points I et J tel que l'abscisse de I négatif.
 - b Vérifier que $\begin{bmatrix}IJ\end{bmatrix}$ et diamètre de la sphère (S) .
- 3 on considère les points A(1,1,1) , B(1,2,3) et C(2,1,-1) .
 - a Calculer $\overrightarrow{AB} \wedge \overrightarrow{AC}$.
 - b Déterminer l'équation cartésienne du plan (ABC).
- 4 a Calculer $d(\Omega,(ABC))$ la distance entre le point Ω et le plan (ABC).
 - b Vérifier que : $(\Delta) \perp (ABC)$.
- 5 Déterminer le point d'intersection du plan (ABC) et la sphère(S).

🖎 Exercice 3 :

Dans l'espace muni d'un repère orthonormé directe $\left(0,\vec{i},\vec{j},\vec{k}\right)$, on considère les points $A\left(-2,-1,-3\right)$, $B\left(-3,0,-2\right)$ et $C\left(-4,2,1\right)$.

- ① Calculer $\overrightarrow{AB} \wedge \overrightarrow{AC}$.
- ${f 2}$ Déterminer l'équation cartésienne du plan ${f (ABC)}$.

- ③ Soit (S) la sphère d'équation : $x^2 + y^2 + z^2 + 2x + 4y 4z + 3 = 0$.
 - a Déterminer le centre Ω et le rayon R de la sphère(S).
 - b Montrer que le plan (ABC) est tangent à la sphère (S).
 - c Déterminer la représentation paramétrique de la droite (Δ) passant par Ω et perpendiculaire à (ABC).
 - d Déterminer le point d'intersection du plan (ABC) et la sphère(S).

🖎 Exercice 4:

Dans l'espace muni d'un repère orthonormé directe $(o,\vec{i},\vec{j},\vec{k})$, on considère les points A(2,1,0), B(1,2,2) et C(3,3,1).

- ① Calculer $\overrightarrow{AB} \wedge \overrightarrow{AC}$.
- ② Déterminer l'équation cartésienne du plan (ABC).
- ③ Montrer que le triangle ABC est équilatéral.
- 4 Calculer l'aire de triangle ABC.
- **5** Soit (S) la sphère d'équation : $x^2 + y^2 + z^2 2x 6y + 5 = 0$.
 - a Déterminer le centre Ω et le rayon R de la sphère (S).
 - b Vérifier que les points A, B, C appartiennent à (S).
 - c Calculer $d(\Omega,(ABC))$
- 6 Donner des équations cartesienne des plans (P) et (Q) paralleles à (ABC) et tangente à (S) .

🖎 Exercice 5 :

Dans l'espace muni d'un repère orthonormé directe $(o,\vec{i},\vec{j},\vec{k})$, on considère les points A(1,-1,3), et le plan (P) d'équation : x-y+3z=0.

- \bigcirc a Déterminer la représentation paramétrique de la droite (OA)
 - b Déterminer une équation cartésienne du plan (Q) orthogonal à la droite (OA) au point A.
 - c Vérifier que (P) et (Q) sont parallèles.
- ② On considère la sphère (S) tangente au plan (Q) en A, et le plan (P) coupe la sphère (S) suivant un cercle (Γ) de centre O et de rayon $\sqrt{33}$.
 - a Montrer que le point $\Omega(a,b,c)$ le centre de la sphère S appartient à la droite OA, en déduire que : b=-a et c=3a.
 - b Montrer que : $\Omega A^2 \Omega O^2 = 33$, et en déduire que : a-b+3c=11
 - c En déduire les coordonnées du point Ω et montrer que le rayon de la sphère est égal à $2\sqrt{11}$.