étude des fonctions

On considère la fonction numérique f définie par : $f(x) = x + \frac{2}{\sqrt{x+1}}$, et soit (C_f) sa courbe représentative dans un repère orthonormé (O, \vec{i}, \vec{j}) (unité de 1 cm).

<u>1.</u>

- Déterminer \mathbf{D}_{f} domaine de définition de la fonction \mathbf{f} .
- Calculer : $\lim_{x \to +\infty} f(x)$ et $\lim_{x \to -1^+} f(x)$, puis interpréter géométriquement le deuxième résultat.
- Montrer que : la courbe $\left(\mathbf{C}_{_{\mathrm{f}}}\right)$ admet une asymptote oblique $\left(\Delta\right)$ au voisinage de $+\infty$ dont on déterminera son équation.
- Etudier la position relative de la courbe $\left(C_{_{\mathrm{f}}}\right)$ et la droite $\left(\Delta\right)$.

2.

- Montrer que: $f'(x) = 1 \frac{1}{(x+1)\sqrt{x+1}}$ pour tout x de D_f .
- **b.** Montrer que : pour tout x de]-1,0] on a $\frac{1}{(x+1)\sqrt{x+1}} \ge 1$ puis en déduire le signe de f'(x) sur]-1,0].
- <u>c.</u> Montrer que : pour tout x de $[1,+\infty[$ on a $\frac{1}{(x+1)\sqrt{x+1}} \le 1$ puis en déduire le signe de f'(x) sur $[1,+\infty[$
- Dresser le tableau de variations de la fonction f sur \mathbf{D}_{f} .
- Donner l'équation de la tangente $\left(T\right)$ à la courbe $\left(C_{\mathrm{f}}\right)$ au point $x_{0}=0$.
- 3. Montrer que : l'équation $x \in]-1;+\infty[$; f(x)=x admet une solution unique α tel que : $0<\alpha<1$.
- **4.** Construire la droite (Δ) et la tangente (T) et la courbe (C_f) de f dans le même repère (O,\vec{i},\vec{j}) .

<u>5.</u> ..

- Montrer que la fonction f admet une fonction réciproque f⁻¹ définie sur l'intervalle J dont le déterminera.
- Montrer que : la fonction réciproque \mathbf{f}^{-1} est dérivable sur l'intervalle \mathbf{J} .
- Calculer $(f^{-1})(\alpha)$ en fonction de α .
- Construire dans le même repère (O,\vec{i},\vec{j}) la courbe représentative $(C_{f^{-1}})$ de la fonction f^{-1} .

2.

<u>PREMITERE PARTIE</u>

On considère la fonction numérique f définie par : $f(x) = \frac{3(x+1)}{\sqrt{2x-1}}$, et soit (C_f) sa courbe représentative dans

un repère orthonormé $\left(O, \vec{i}, \vec{j}
ight)$ (unité de 1 cm).

<u>1.</u> ..

- Déterminer D_f domaine de définition de la fonction f .
- Calculer : $\lim_{x\to +\infty} f(x)$ et $\lim_{x\to \frac{1}{2}} f(x)$, puis interpréter géométriquement le deuxième résultat .
- Montrer que : la courbe $\left(\mathrm{C}_{\mathrm{f}} \right)$ admet , au voisinage de $+\infty$ une branche parabolique dont on déterminera la direction

2. ..

- <u>a.</u> Montrer que : $f'(x) = \frac{3(x-2)}{(2x-1)\sqrt{2x-1}}$ pour tout x de D_f .
- Montrer que la fonction f est décroissante sur $\left|\frac{1}{2},2\right|$ et la fonction f est croissante sur $\left[2,+\infty\right[$.
- Dresser le tableau de variations de la fonction f sur $\mathbf{D}_{\mathbf{f}}$.

3.

- Montrer que: $\forall x \in D, f''(x) = \frac{3(5-x)}{(2x-1)^{\frac{5}{2}}}$ pour tout x de D_f .
- Etudier le signe de la fonction dérivée seconde de f puis déterminer les coordonnées du point I d'inflexion à la courbe $\left(C_{_{\mathrm{f}}}\right)$.
- Donner l'équation de la tangente $\left(\mathbf{T} \right)$ à la courbe $\left(\mathbf{C}_{\mathrm{f}} \right)$ au point I .
- 4. Construire la tangente (T) et la courbe (C_f) de f dans le même repère (O,\vec{i},\vec{j}) .
- **5.** On considère g la restriction de la fonction f sur $I = [2, +\infty[$.
 - $\underline{\mathbf{a}}$ Montrer que la restriction g'admet une fonction réciproque \mathbf{g}^{-1} définie sur l'intervalle J dont le
 - $\underline{\mathbf{b}}$ Calculer $\mathbf{g}(5)$ puis montrer que la fonction réciproque \mathbf{g}^{-1} est dérivable en 6 puis calculer $(g^{-1})'(6)$
 - $\underline{\underline{\mathbf{c}}}$ Construire dans le même repère $\left(O,\vec{i},\vec{j}\right)$ la courbe représentative $\left(C_{g^{-1}}\right)$ de la fonction \mathbf{g}^{-1} .

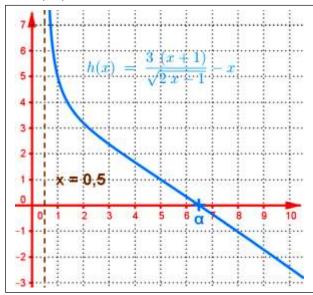
DBUXIDMIDD PARTID

La figure ci-contre représente (C_h) la courbe représentative de la fonction h définie sur $\left|\frac{1}{2},+\infty\right|$ par :

$$h(x) = f(x) - x.$$

étude des fonctions

- a. α est un réel tel que : 6,4 < α < 6,5 (voir la figure). En déduire graphiquement la seule solution de l'équation h(x) = 0 en déduire $f(\alpha)$.
- **b.** Déterminer le signe de h(x) sur $I = [5, \alpha]$.
- **2.** Soit (u_n) la suite numérique définie par $u_0 = 5$ et $u_{n+1} = f(u_n)$ pour tout n de $\mathbb N$.
 - $\underline{\mathbf{a}}$ Calculer \mathbf{u}_1 .
 - **<u>b.</u>** Montrer par récurrence que : $5 \le u_n \le \alpha$ pour tout n de $\mathbb N$.
 - $\underline{\mathbf{c}}$ montrer que la suite $\left(\mathbf{u}_{\mathbf{n}}\right)$ est convergente .
 - $\underline{\mathbf{d}}$. En déduire que la suite (\mathbf{u}_n) est convergente.
 - $\underline{\mathbf{e}}$ Calculer la limite de la suite $\left(\mathbf{u}_{\mathbf{n}}\right)$.



3.

On considère la fonction numérique f définie par : $f(x) = \frac{x-1}{\sqrt{x^2-2x+2}}$, et soit (C_f) sa courbe représentative dans un repère orthonormé (O,\vec{i},\vec{j}) (unité de 2 cm).

- <u>1.</u> ..
 - $\underline{\mathbf{a}}_{\mathbf{c}}$ Montrer que f est définie sur $D_{\mathbf{f}}=\mathbb{R}$.
 - $\underline{\underline{b}}$ Calculer: $\lim_{x\to +\infty} f(x)$ et $\lim_{x\to -\infty} f(x)$, puis interpréter géométriquement les deux résultats.
 - $\underline{\mathbf{c}}$ Montrer que : la courbe $\left(\mathbf{C}_{\mathrm{f}}\right)$ admet , au voisinage de $+\infty$ une branche parabolique dont on déterminera la direction
- **2.** ..
 - $\underline{a}. \quad \text{Montrer que}: f'(x) = \frac{1}{\left(x^2 2x + 2\right)\sqrt{x^2 2x + 2}} \text{ pour tout } x \text{ de } \mathbb{R}.$
 - **b.** Montrer que la fonction f est croissante sur D_f .
 - $\underline{\mathbf{c}}$ Dresser le tableau de variations de la fonction f sur \mathbb{R} .
- 3.
 - ${f \underline{a}}_{f \cdot}$ Montrer que : le point ${f I}ig(1;0ig)$ est un centre de symétrie de la courbe $ig({f C}_{f f}ig)$.
 - $\underline{\mathbf{b}}_{\!_{\mathbf{t}}}$ Donner l'équation de la tangente $\left(\mathbf{T}\right)$ à la courbe $\left(\mathbf{C}_{\!_{\mathbf{f}}}\right)$ au point I .
- 4. Construire la tangente (T) et la courbe (C_f) de f dans le même repère (O,\vec{i},\vec{j}) .

étude des fonctions

5.

- Montrer que la fonction f admet une fonction réciproque f⁻¹ définie sur l'intervalle J dont le
- Construire dans le même repère (O, \vec{i}, \vec{j}) la courbe représentative $(C_{f^{-1}})$ de la fonction f^{-1} .
- Calculer f(1) puis montrer que la fonction réciproque f^{-1} est dérivable en 0 puis calculer $\left(f^{-1}\right)\left(0\right)$

4.

On considère la fonction numérique f définie par : $\begin{cases} f(x) = \frac{x}{x-1} & \text{; } x < 0 \\ f(x) = x + \sqrt{x^2 + 2x} & \text{; } x \ge 0 \end{cases}$, et soit (C_f) sa courbe

représentative dans un repère orthonormé $(0, \vec{i}, \vec{j})$ (unité de 2 cm).

- <u>1.</u> ..
 - Montrer que f est définie sur $D_f = \mathbb{R}$.
 - Etudier la continuité de la fonction f au point $x_0 = 0$.

2. ..

- Calculer: $\lim_{x\to +\infty} f(x)$ et $\lim_{x\to -\infty} f(x)$, puis interpréter géométriquement le deuxième résultat.
- Vérifier que : $x + \sqrt{x^2 + 2x} (2x+1) = \frac{-1}{x+1+\sqrt{x^2+2x}}$ pour tout x de $[0,+\infty[$.
- En déduire la position relative de la courbe (C_f) et la droite (Δ) d'équation y = 2x + 1 sur l'intervalle $[0,+\infty]$.
- Calculer : $\lim_{x \to +\infty} f(x) (2x+1)$, puis interpréter géométriquement le résultat.

3. ..

- Calculer: $\lim_{x\to 0} \frac{f(x)-f(0)}{x}$ puis interpréter géométriquement le résultat .
- Etudier la dérivabilité à gauche de la fonction f au point $X_0 = 0$.
- Est-ce que la fonction f est dérivable au point $x_0 = 0$.

<u>4.</u> ..

- Montrer que la fonction f est dérivable sur $]0,+\infty[$, puis vérifier que $f'(x)=1+\frac{x+1}{\sqrt{x^2+2x}}$ pour tout x de $\left]0,+\infty\right[\;$, en déduire le signe de sur $\left]0,+\infty\right[\;$.
- <u>b.</u> Vérifier que : f'(x) = $\frac{-1}{(x+1)^2}$ pour tout x de]-∞,0[, en déduire le signe de sur]0,+∞[.
- Dresser le tableau de variations de la fonction f $\,$ sur $\,\mathbb{R}\,$.

- **5.** Construire la courbe $(C_{\vec{i}})$ de f dans le repère $(0,\vec{i},\vec{j})$.
- **6.** On considère g la restriction de la fonction f sur $I = [0, +\infty[$.
 - Montrer que la restriction g admet une fonction réciproque g^{-1} définie sur l'intervalle J dont le déterminera.
 - Construire dans le même repère $\left(O,\vec{i},\vec{j}\right)$ la courbe représentative $\left(C_{g^{-1}}\right)$ de la fonction g^{-1} .
 - Calculer: $g\left(\frac{1}{4}\right)$ puis $\left(g^{-1}\right)^{\prime}\left(1\right)$.
 - Déterminer la fonction réciproque g^{-1} .
 - Sans calculer la limite $\lim_{\substack{x\to 0 \ x\to 0}} \frac{g^{-1}(x)}{x}$ interpréter géométriquement le résultat on utilise le résultat de la question 3.2

On considère la fonction numérique f définie sur $\left[0,+\infty\right[$ par : $\begin{cases} f\left(x\right) = \frac{\sqrt{x}-1}{x-1} & ; x \in \left[0;1\right[\cup\left]1;+\infty\right[\\ f\left(1\right) = \frac{1}{2} \end{cases}$ et

soit $\left(C_{\mathrm{f}}\right)$ sa courbe représentative dans un repère orthonormé $\left(0,\vec{i},\vec{j}\right)$ (unité de 2 cm).

- - Calculer : $\lim_{x \to +\infty} f(x)$, puis interpréter géométriquement le résultat .
 - Etudier la continuité de la fonction f au point $X_0 = 1$.
 - Etudier la continuité à droite de la fonction f au point $X_0 = 0$.
- **2.**
 - Montrer que la fonction f est dérivable au point $X_0 = 1$ et le nombre dérivé est $f'(1) = -\frac{1}{8}$
 - Donner l'équation de la tangente (T) à la courbe (C_f) au point $X_0 = 1$.
 - Etudier la dérivabilité à droite de la fonction f au point $X_0 = 0$.
 - Est-ce que la fonction f est dérivable sur $]0,+\infty[\,\setminus\{1\}\,$ puis vérifier la fonction dérivée de f sur

$$]0,+\infty[\setminus\{1\} \text{ est } f'(x) = \frac{-(\sqrt{x}-1)^2}{2\sqrt{x}(x-1)^2}.$$

- Dresser le tableau de variations de la fonction f sur $[0,+\infty]$.
- 3. Construire la courbe (C_f) de f dans le repère (O, \vec{i}, \vec{j}) .
- **4.** On considère g la restriction de la fonction f sur $I = [0, +\infty[$.

- Montrer que la fonction g admet une fonction réciproque g^{-1} définie sur l'intervalle J dont le déterminera.
- Construire dans le même repère $\left(O,\vec{i},\vec{j}\right)$ la courbe représentative $\left(C_{g^{-1}}\right)$ de la fonction g^{-1} .
- Calculer g(4) puis montrer que la fonction réciproque g^{-1} est dérivable en $\frac{1}{2}$ puis calculer $\left(\mathbf{g}^{-1}\right)'\left(\frac{1}{3}\right).$

PREMIERE PARIE

On considère la fonction numérique g définie sur \mathbb{R} par : $g(x) = x^3 - 3x + 2$.

<u>1.</u> ..

- Calculer: g(-2).
- $\underline{\mathbf{b}}_{\underline{\mathbf{c}}}$ Calculer: $\lim_{x \to -\infty} \mathbf{g}(\mathbf{x})$ et $\lim_{x \to +\infty} \mathbf{g}(\mathbf{x})$.

2. ..

- Calculer: g'(x) pour tout x de \mathbb{R} .
- Etudier le signe de g'(x) puis dresser le tableau de variations de g sur $\mathbb R$.
- Déterminer le signe de la fonction g sur ${\mathbb R}$, on précise les deux valeurs pour lesquelles g(x)
- **d.** Montrer que : $g([3,+\infty[)\subset[3,+\infty[$.

DEUXIÈMIE PARILE

Soit la fonction numérique g définie sur $\mathbb{R} \setminus \{-1\}$ par : $\begin{cases} f(x) = \frac{x^3 - 1}{x^2 - 1}, & x \neq -1 \text{ et } x \neq 1 \\ f(1) = \frac{3}{2} \end{cases}$

Soit $\left(C_{_f}\right)$ sa courbe représentative dans un repère orthonormé $\left(0,\vec{i},\vec{j}\right)$ (unité de 1 cm).

<u>1.</u> ..

- Etudier la continuité de la fonction f au point $X_0 = 1$.
- Calculer les limites suivantes : $\lim_{\substack{x \to -1 \\ x > -1}} f(x)$ et $\lim_{\substack{x \to -1 \\ x < -1}} f(x)$ puis interpréter géométriquement les résultats

2. ..

- Calculer: $\lim_{x\to +\infty} f(x)$ et $\lim_{x\to +\infty} f(x) x$ puis interpréter géométriquement les résultats
- Calculer : $\lim_{x\to\infty}f(x)$ puis déterminer la branche infinie de $\left(C_{_f}\right)$ au voisinage de $-\infty$.
- Déterminer la position relative de la droite (D) d'équation y = x et la courbe (C_f)
- 3. Etudier la dérivabilité de la fonction f au point $x_0 = 1$ (remarquer que $2x^3 3x^2 + 1 = (x-1)^2(2x-1)$

étude des fonctions

- <u>a.</u> Vérifier que : $f'(x) = \frac{xg(x)}{(x^2-1)^2}$ pour tout x de $\mathbb{R} \setminus \{-1;1\}$.
- Déterminer le signe de f'(x) pour tout x de $\mathbb{R} \setminus \{-1;1\}$.
- Dresser le tableau de variations de la fonction f sur $\mathbb{R} \setminus \{-1\}$
- 4. Construire dans le repère (O,\vec{i},\vec{j}) la droite (D) et la courbe (C_f) . (unité de 1 cm).

TROISIÈMEE PARIE

Soit a est un nombre réel , on considère la suite (\mathbf{u}_n) définie par : $\mathbf{u}_0 = \mathbf{a}$ et $\mathbf{u}_{n+1} = \mathbf{g}(\mathbf{u}_n) - \mathbf{u}_n$ pour tout n de \mathbb{N} .

- **1.** On prend le cas : a = 2, montrer que : $u_n = 2$ pour tout n de N
- **2.** On prend le cas : a = -2, montrer que : $u_n = 2$ pour tout n de $\mathbb{N}^* = \mathbb{N} \setminus \{0\}$.
- 3. On prend le cas : a = 0, montrer que : $u_n = 2$ pour tout n de $\mathbb{N}^* = \mathbb{N} \setminus \{0\}$.
- **4.** On prend le cas: a = 3, Montrer que: $u_n \ge 3$ pour tout n de \mathbb{N} .

7:

On considère la fonction numérique f définie sur $[0,+\infty[$ par : $f(x) = x - 2\sqrt{x} + 2$, et soit (C_f) sa courbe représentative dans un repère orthonormé $\left(0,\vec{i},\vec{j}\right)$ (unité de 2 cm).

- 1.
 - Calculer la limite suivante : $\lim_{x \to \infty} f(x)$.
 - Calculer les limites suivantes : $\lim_{x \to +\infty} \frac{f(x)}{x}$ et $\lim_{x \to +\infty} f(x) x$ puis interpréter géométriquement les résultats obtenus.
 - Etudier la position relative de la courbe (C_f) et la droite (Δ) d'équation $(\Delta): y=x$.
- 2.
 - <u>a.</u> .. Etudier la dérivabilité à droite de la fonction f au point $X_0 = 1$ (remarquer que $2x^3-3x^2+1=(x-1)^2(2x-1)$
 - Calculer f'(x) pour tout x de $]0,+\infty[$ puis vérifier que $f'(x) = \frac{\sqrt{x-1}}{\sqrt{x}}$.
 - Déterminer le signe de f'(x) pour tout $x \]0,+\infty[$.
 - dresser le tableau de variations de la fonction f sur $[0,+\infty]$
- 3. Construire dans le repère (O,\vec{i},\vec{j}) la droite (Δ) et la courbe (C_f) . (unité de 2 cm).
- **4.** On considère g la restriction de la fonction f sur $I = [1, +\infty]$.
 - Montrer que la fonction g admet une fonction réciproque g^{-1} définie sur l'intervalle J dont le déterminera.

étude des fonctions

- Construire dans le même repère $\left(0,\vec{i},\vec{j}\right)$ la courbe représentative $\left(\mathbf{C}_{\mathbf{g}^{-1}}\right)$ de la fonction \mathbf{g}^{-1}
- Déterminer: $g^{-1}(x)$ (remarquer que $x-2\sqrt{x}+2=(\sqrt{x}-1)^2$)
- 5. Soit (u_n) la suite numérique définie par $u_0 = 2$ et $u_{n+1} = g(u_n)$ pour tout n de $\mathbb N$.
 - Montrer par récurrence que : $u_n > 1$ pour tout n de \mathbb{N} .
 - Montrer que la suite (\mathbf{u}_n) est décroissante.
 - En déduire que la suite $(\mathbf{u}_{\mathbf{n}})$ est convergente .
 - Calculer la limite de la suite $\left(\mathbf{u}_{\mathbf{n}}
 ight)$.

8.

On considère la fonction numérique f définie sur \mathbb{R} par : $f(x) = x + 3 - \sqrt{x^2 + 5}$, et soit (C_f) sa courbe représentative dans un repère orthonormé $\left(0,\vec{i},\vec{j}\right)$ (unité de 1 cm).

- <u>1.</u> ..
 - Montrer que : $\lim_{x \to +\infty} f(x) = 3$, puis interpréter géométriquement le résultat.
 - Calculer: $\lim_{x\to -\infty} f(x)$.
 - Montrer que : la droite (Δ) d'équation y = 2x + 3 est une asymptote oblique à la courbe (C_f) au voisinage de $+\infty$.
 - déterminer l'intersection de la courbe $\left(\mathbf{C}_{\mathbf{f}}\right)$ et l'axe des abscisses.

2. ..

- Calculer f'(x) pour tout x de \mathbb{R} puis vérifier que $f'(x) = \frac{-x + \sqrt{x^2 + 5}}{\sqrt{x^2 + 5}}$.
- Montrer que: $\sqrt{x^2 + 5} x \ge 0$ puis en déduire les variations de sur \mathbb{R} .
- dresser le tableau de variations de la fonction f $\,$ sur $\,\mathbb{R}\,$.
- Ecrire l'équation réduite de la tangente à (C_f) au point $x_0 = -\frac{2}{3}$.
- Déterminer : f([1,2]) et f([2,3]).

<u>3.</u> ..

- Etudier le signe de : f(x)-x (remarquer que $f(x)-x=\frac{4-x^2}{3+\sqrt{x^2+5}}$).
- Etudier la position relative de la droite $\left(\Delta\right)$ et la courbe $\left(C_{f}\right)$.
- Construire dans le repère $\left(O,\vec{i},\vec{j}\right)$ la droite $\left(\Delta\right)$ et la courbe $\left(C_{f}\right)$. (unité de 1 cm).

<u>4.</u>

- Montrer que la fonction f admet une fonction réciproque f^{-1} définie sur l'intervalle $J =]-\infty,3[$
- Construire dans le même repère $\left(\vec{O,i,j}\right)$ la courbe représentative $\left(\vec{C_{f^{-1}}}\right)$ de la fonction f^{-1} .

étude des fonctions

- Montrer que : la fonction réciproque f⁻¹ est dérivable en 2
- d. Calculer: f(2) puis $(f^{-1})(2)$.
- 5. Soit (u_n) la suite numérique définie par $u_0 = 1$ et $u_{n+1} = f(u_n)$ pour tout n de $\mathbb N$.
 - Montrer par récurrence que : $1 \le u_n \le 2$ pour tout n de \mathbb{N} .
 - Montrer que la suite (\mathbf{u}_n) est croissante.
 - En déduire que la suite (\mathbf{u}_n) est convergente.
 - Calculer la limite de la suite (\mathbf{u}_n) .
- **6.** Soit (v_n) la suite numérique définie par $v_0 = 3$ et $v_{n+1} = f(v_n)$ pour tout n de \mathbb{N} .
 - Montrer par récurrence que : $2 \le v_n \le 3$ pour tout n de \mathbb{N} .
 - Montrer que la suite (V_n) est décroissante
 - En déduire que la suite (V_n) est convergente.
 - Calculer la limite de la suite (v_n) .

9.

On considère la fonction numérique f définie par : $f(x) = -2 + \frac{x+2}{\sqrt{x+1}}$.

et soit $\left(C_{f}\right)$ la courbe représentative de la fonction f dans un repère orthonormé $\left(0,\vec{i},\vec{j}\right)$ (unité de 1 cm) .

- 1. Montrer que : $D_f =]-1,+\infty[(D_f \text{ ensemble de définition de la fonction } f)]$
- Calculer : $\lim_{\substack{x \to -1 \\ y > -1}} f(x)$ puis interpréter géométriquement le résultat .
- Calculer: $\lim f(x)$.
- Montrer que (C_f) admet au voisinage de $+\infty$ une branche parabolique de direction asymptotique au voisinage de + o dont on déterminera sa direction.

2.

- Calculer f'(x) pour tout x de]-1,+ ∞ [puis vérifier que f'(x) = $\frac{x}{2(x+1)\sqrt{x+1}}$.
- Etudier le signe de f'(x) sur $]-1,+\infty[$.
- dresser le tableau de variations de la fonction f $\,$ sur $\,\mathbb{R}\,$.
- Ecrire l'équation réduite de la tangente à (C_f) au point $x_0 = -\frac{2}{3}$.

3. ..

- Montrer que : pour tout x de]-1,+ ∞ [que f''(x) = $\frac{2-x}{4(x+1)^2 \sqrt{x+1}}$.
- En déduire la concavité de la courbe (C_f) et les coordonnées de l'unique point d'inflexion de (C_f) .

étude des fonctions

- 4. Construire dans le repère (O,\vec{i},\vec{j}) la droite (Δ) et la courbe (C_f) . (unité de 1 cm).
- **5.** On considère g la restriction de la fonction f sur $I = [0, +\infty[$.
 - Montrer que la fonction g admet une fonction réciproque \mathbf{g}^{-1} définie sur l'intervalle J dont le déterminera.
 - Construire dans le même repère $\left(O,\vec{i},\vec{j}\right)$ la courbe représentative $\left(C_{g^{-1}}\right)$ de la fonction g^{-1} .
 - Calculer g(3) puis montrer que : la fonction réciproque g^{-1} est dérivable en $\frac{4}{3}$.
 - $\underline{\mathbf{d}}$ Calculer : $\left(\mathbf{g}^{-1}\right)'\left(\frac{4}{3}\right)$.
- **6.** Soit (\mathbf{u}_n) la suite numérique définie par $\mathbf{u}_0 = 3$ et $\mathbf{u}_{n+1} = \mathbf{g}(\mathbf{u}_n)$ pour tout n de \mathbb{N} .
 - Montrer par récurrence que : $0 \le u_n \le 3$ pour tout n de \mathbb{N} .
 - Montrer que la suite (\mathbf{u}_n) est décroissante.
 - En déduire que la suite $\left(\mathbf{u}_{\mathbf{n}}\right)$ est convergente .
 - Calculer la limite de la suite (u_n) .

10.

On considère la fonction numérique f définie sur $\mathbf{D}_{\mathbf{f}} =]-\infty, -1[\cup]-1, +\infty[$ par :

$$\begin{cases} f(x) = \frac{x^4}{x^3 + x^2} ; x \neq -1 \text{ et } x \neq 0 \\ f(0) = 0 \end{cases}$$

et soit $\left(C_{f}\right)$ la courbe représentative de la fonction f dans un repère orthonormé $\left(0,\vec{i},\vec{j}\right)$ (unité de 1 cm) .

- - Calculer: $\lim_{\substack{x \to -1 \\ x \to -1}} f(x)$ et $\lim_{\substack{x \to -1 \\ x \to -1}} f(x)$ puis interpréter géométriquement les résultats.
 - Calculer: $\lim_{x \to +\infty} f(x)$ et $\lim_{x \to +\infty} f(x) (x-1)$ puis interpréter géométriquement les résultats.
 - Calculer: $\lim_{x \to \infty} f(x)$.
 - Montrer que (C_f) admet au voisinage de $-\infty$ une asymptote oblique au voisinage de $-\infty$ dont on déterminera son équation.
 - Etudier la position relative de la courbe (C_f) et la droite (D) d'équation y = x 1 sur D_f .
- 2.
 - Calculer: $\lim_{x\to 0} \frac{f(x)}{x}$ puis interpréter géométriquement le résultat.
 - Calculer f'(x) pour tout x de $]-\infty,-1[\cup]-1,0[\cup]0,+\infty[$ puis vérifier que $f'(x)=\frac{x^3(x+2)}{(x^3+x^2)^2}$.

- Etudier le signe de f'(x) sur $]-\infty,-1[\cup]-1,0[\cup]0,+\infty[$.
- dresser le tableau de variations de la fonction f sur \mathbf{D}_{f} .
- Ecrire l'équation réduite de la tangente à (C_f) au point $X_0 = 0$.

3. ..

- Vérifier que : $f(x)-(x-1)=\frac{x^2}{y^3+y^2}$ puis en déduire la position de la courbe (C_f) et la droite (D).
- Etudier l'intersection de la droite (Δ) d'équation : y = x et la courbe (C_f) .
- Construire dans le repère $\left(O,\vec{i},\vec{j}\right)$ la droite $\left(D\right)$ et la courbe $\left(C_{f}\right)$. (unité de 1 cm) .
- **4.** On considère g la restriction de la fonction f sur I =]-1,0]
 - Montrer que la fonction g admet une fonction réciproque $\operatorname{\mathbf{g}}^{-1}$ définie sur l'intervalle J dont le déterminera.
 - Construire dans le même repère $\left(O,\vec{i},\vec{j}\right)$ la courbe représentative $\left(C_{g^{-1}}\right)$ de la fonction g^{-1} .
 - <u>c</u> Calculer $g\left(\frac{1}{2}\right)$ puis montrer que : la fonction réciproque g^{-1} est dérivable en $\frac{1}{6}$.
 - $\underline{\mathbf{d}}$. Calculer : $\left(\mathbf{g}^{-1}\right)'\left(\frac{1}{6}\right)$.
- 5. Soit (u_n) la suite numérique définie par $u_0 = 1$ et $u_{n+1} = g(u_n)$ pour tout n de $\mathbb N$.
 - Montrer par récurrence que : $0 \le u_n \le 1$ pour tout n de \mathbb{N} .
 - Montrer que la suite (\mathbf{u}_n) est décroissante.
 - En déduire que la suite (\mathbf{u}_n) est convergente.
 - Calculer la limite de la suite (\mathbf{u}_n) .