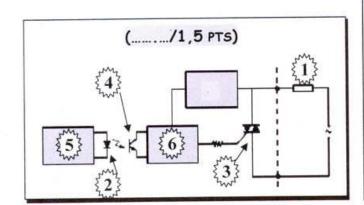
Branche: Sciences Maths B Lycée: G.S. Anisse Ain Sebaâ

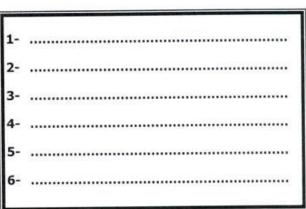
Professeur: M.Marhraoui

Matière : Sciences de l'ingénieur

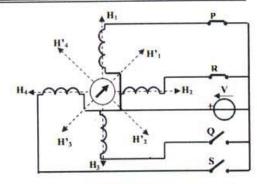
<u>Date</u>: 12/01/2012

Durée: 2h


Nom:	Prénom :	7 3
Classe: 2SMB	Groupe :	Note: 2/20
	DEVOID CUDYFILE Nº . 3	TW


DEVOIR SURVEILLE N°: 3

Questions du cours (......./3,5pts)


1- Quels sont les avantages du relais statique par rapport au relais électromagnétique :/0,5 pt

2- Identifier les différents éléments constituant un relais statique en utilisant la liste des propositions suivantes : (Triac, Diode photoémettrice, Actionneur, Circuit de commande de la gâchette du triac, Transistor photo-électrique, Unité de commande).

3- Les bobines du moteur pas à pas à aimant permanant sont commandées par quatre interrupteurs électroniques : P, Q, R et S comme le montre la figure ci-contre :

a- Remplir le tableau ci-dessus par les commandes nécessaires (1 ou 0) des différents interrupteurs pour obtenir les positions du rotor indiquées :/1 pt

Moteur	S	Q	R	P
1				
1				
K				
+				
1				
1				
×				14
-				

b- Tracer le chronogramme de commande correspondant :

....../0,5 pt

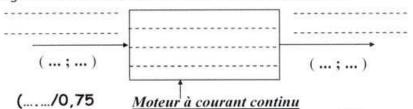
P

R

Q

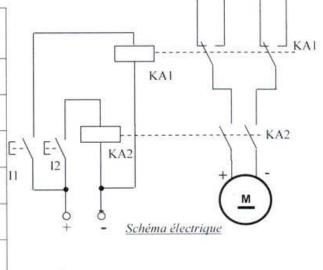
S

Branche: Sciences Maths B Lycée : G.S. Anisse Ain Sebaâ


Matière : Sciences de l'ingénieur Professeur: M.Marhraoui

Date: 12/01/2012

Durée: 2h


Soit un moteur à courant continu alimenté par deux tensions U₁=12V ou U₂= 24V par l'intermédiaire de deux relais électromagnétiques. Ces derniers sont commandés par deux boutons poussoirs I1 et I2 (Voir schéma électrique).

a) Compléter l'actigramme du niveau A-0 du moteur à courant continu :

b/ Compléter le tableau des étapes suivants par M ou A : (...../ 3 PTS)

Étape	12	Iı	Sens avant de rotation (M – A)	Sens arrière de rotation (M – A)	Vitesse lente (M – A)	Vitesse rapide (M – A)
Etape 0	R	R				
Etape 1	T	R				
Etape 2	R	R				
Etape 3	R	Т				
Etape 4	T	Т				
Etape 5	R	T				

+24v

2/ Le même moteur est maintenu alimenté avec la tension U2=24V. Il tourne à la vitesse de rotation angulaire de

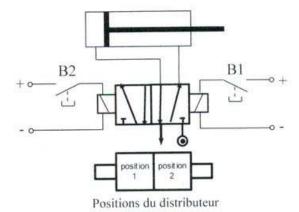
(/0,25PT) (/0,25PT) (/0,25PT)
(/0.25pm)
(/0,25РТ)
(/0,25РТ)
ion θ' = 40 π rad :

Branche: Sciences Maths B Lycée: G.S. Anisse Ain Sebaâ

Professeur : M.Marhraoui

Matière : Sciences de l'ingénieur

<u>Date</u>: 12/01/2012


Durée: 2h

Exercices N°2: (...../3pts)

Soit un vérin alimenté par l'intermédiaire d'un distributeur dont les positions sont commandée par deux boutons poussoirs **B1** et **B2**. Le vérin est alimenté avec une pression $P=5/(2\pi)$ Bar et fourni un effort F2=2N en tirant (rentrée de la tige). Le piston du vérin a un diamètre D=8mm.

1/ En marquant : 1 ou 2 pour la position du distributeur ; E ou S pour Entrée ou Sortie pour la tige du vérin, complétez le tableau ci-dessous, relatif au schéma suivant : (...../ 1PT)

étape	B1	В2	Position du distributeur (1 ou 2)	Tige du Vérin (E ou S)
étape 0	R	T		
étape 1	R	R		
étape 2	Т	R		
étape 3	R	R		

2/ a- Quel le <u>nom</u> du distributeur utilisé et le <u>type</u> (monostable ou bistable) :	
	(/0,25РТ)
b- marquer les différents repérages du distributeur sur le schéma ci-dessus :	(/0,5рт)
c- Quel est le nom du vérin utilisé :	(/0,25PT)
d- Calculer l'effort F1 exercé par la tige en poussant (sortie de la tige) :	
c- Quel est le diamètre d en (mm) de la tige du vérin :	(, 0,0 + 1,7
	((0.5)

Exercices N°3 (...../8pts)

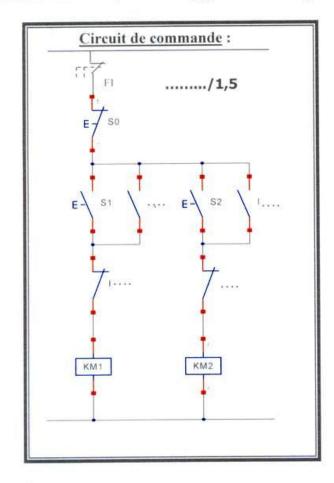
Soit un moteur asynchrone triphasé à cage dont la plaque signalétique est schématisé ci-dessous. Il est alimenté par un réseau triphasé 230V/400V; 50 Hz.

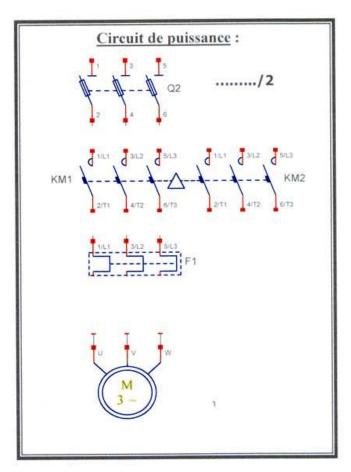
	CIVIL	V 14.	034729	GLUU.		
P55	IK0	8	cl.F	40°C	S.S1	kg 3
	٧	Hz	min -1	kW	cos φ	Α
7 4	380	50	1420	5.50	0.85	12.00
7	230	•	1430	1	0.82	11.90
â	415	-	1435	1 -	0.80	11.70
7	440	60	1710	6.60	0.86	12.30
7	460	-	1730	-	0.84	11.90

Branche : Sciences Maths B Lycée . : G.S. Anisse Ain Sebaâ

Professeur: M.Marhraoui

Matière : Sciences de l'ingénieur


<u>Date</u>: 12/01/2012


Durée: 2h

A/ 1- Quel couplage doit on réaliser des enroulements statoriques pour que le moteur fonctionne
correctement :/0,25PT)
2- En déduire, alors, la tension supportée par chaque enroulement statorique :(/0,25PT)
3- Quel est la valeur de la vitesse nominale du moteur N en (tr/min):(/0,25PT)
4- Donner la valeur de la puissance utile mécanique Pu :(/0,25PT)
5- En déduire, alors, la valeur du couple utile :
(/0,5PT)
6- Quel la valeur du courant nominal absorbé par le moteur :(/0,25PT)
7- Calculer la valeur de la puissance active électrique absorbée par le moteur :
(/0,5РТ)
8- En déduire, alors, la valeur du rendement nominal en pourcent du moteur η(%):
(/0,25PT)

B/ Le démarrage du moteur est direct par contre le freinage se fait moteur lancé. Le moteur peut tourner dans les deux sens de marche (Marche avant et Marche arrière) en inversant deux phases d'alimentation du moteur (dans notre cas on va inverser les phases 1 et 3). Les commandes des deux positions se font par les boutons poussoirs S_1 et S_2 , par contre l'arrêt se fait par le bouton poussoir S_0 .

1- Donner les noms des contacts auxiliaires des deux contacteurs, faites le repérage du circuit de commande et compléter le traçage du circuit de puissance :

Branche: Sciences Maths B Lycée : G.S. Anisse Ain Sebaâ

Matière : Sciences de l'ingénieur Professeur: M.Marhraoui

Date: 12/01/2012

Durée: 2h

2- Choisir les références et le calibrage des appareillages électriques utilisés en utilisant le document constructeur ci-dessous:/2

	Référence	Calibre ou réglage	taille
Contacteur	***************************************		
Sectionneur			
fusible			
Relais thermique	***************************************	***********	

TABLEAU DE CHOIX DES APPAREILLAGES ELECTRIQUES

Service ininterrompu, temporaire ou intermittent jusqu'à 30 cycles de manœuvres/heure

				Contacteur	Relais the	rmique	Protection			
Moteur		tripolaire	tripolaire différentiel		3 Fusibles aM		Sectionneur	Sectionneur disjoncteur		
	/230V		/400V	Dáfáransa	Dáfáranas	Zone de	Calibre	Taille	Dáfáranas	Difference
P (Kw)	In (A)	P (Kw)	In (A)	Référence	Référence	réglage (A)	(A)	Taille	Référence	Référence
-	=	0,37	1,03	LC1-D09	LR2-D1306	1 1,6	2	10 x 38	LS1-D2531	GK2-CF06
		0,55	1,6	LC1-D09	LR2-D13X6	1,25 2	4	10 x 38	LS1-D2531	GK2-CF07
0,37	1,8	0,75	2	LC1-D09	LR2-D1307	1,6 2,5	4	10 x 38	LS1-D2531	GK2-CF07
0,55	2,75	1,1	2,6	LC1-D09	LR2-D1308	2,5 4	6	10 × 38	LS1-D2531	GK2-CF08
0,75	3,5	1,5	3,5	LC1-D09	LR2-D1308	2,5 4	6	10 × 38	LS1-D2531	GK2-CF08
1,1	4,4	2,2	5	LC1-D09	LR2-D1310	46	8	10 × 38	LS1-D2531	GK2-CF10
1,5	6,1	3	6,6	LC1-D09	LR2-D1312	5,5 8	12	10 x 38	LS1-D2531	GK2-CF12
2,2	8,7	4	8,5	LC1-D09	LR2-D1314	7 10	12	10 × 38	LS1-D2531	GK2-CF14
3	11,5	5,5	11,5	LC1-D12	LR2-D1316	9 13	16	10 × 38	LS1-D2531	GK2-CF16
4	14,5	7,5	15,5	LC1-D18	LR2-D1321	12 18	20	10 x 38	LS1-D2531	GK2-CF21
-	-	9	18,5	LC1-D25	LR2-D1322	17 25	25	10 × 38	LS1-D2531	GK2-CF22
5,5	20	11	22	LC1-D25	LR2-D1322	17 25	25	10 x 38	LS1-D2531	GK2-CF12
7,5	27	15	30	LC1-D32	LR2-D1353	23 32	40	14 x 51	GK1-EK	GK3-EF40
-	-	15	30	LC1-D32	LR2-D1355	28 36	40	14 x 51	GK1-EK	GK3-EF40
10	35	18,5	37	LC1-D40	LR2-D1355	30 40	40	14 × 51	GK1-EK	GK3-EF40
11	39	-	-	LC1-D40	LR2-D1357	37 50	63	22 x 58	DK1-FB23	GK3-EF65
2	2	22	44	LC1-D50	LR2-D1357	37 50	63	22 x 58	DK1-FB23	GK3-EF65
15	52	25	52	LC1-D50	LR2-D1359	48 65	63	22 x 58	DK1-FB23	GK3-EF65
18,5	64	30	60	LC1-D65	LR2-D1361	55 70	80	22 × 58	DK1-FB23	GK3-EF65
22	75	37	72	LC1-D80	LR2-D1363	63 80	80	22 x 58	DK1-FB23	GK3-EF65
30	85	45	85	LC1-D95	LR2-D1365	80 93	100	22 x 58	DK1-FB23	GK3-EF80

Commande de moteurs à cage - Démarrage direct

Température ambiante ≤ 55°C

5/5

BONNE ANNEE 2012