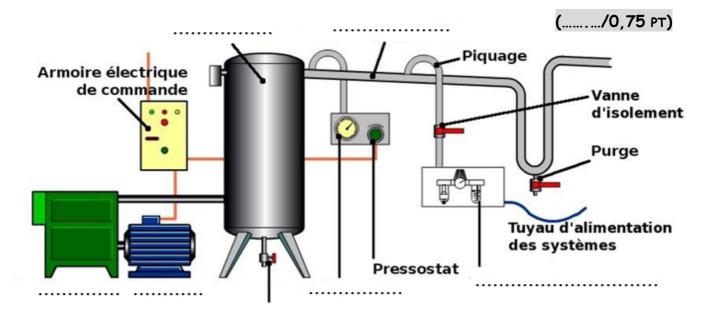
Branche: Sciences Maths B : G.S. Anisse Ain Sebaâ

Professeur: M.Marhraoui Matière : Sciences de l'ingénieur <u>Date</u>: 18/12/2014 Durée: 2h

Nom:	Prénom:	7 3
Classe: 2SMB	Groupe :	Note : 20

DEVOIR SURVEILLE N°: 2


(Les tels portables et les calculatrices ne sont pas autorisés)

Questions du cours : Etude d'une installation pneumatique.

...../2pts

1. Pointillés à compléter par les propositions suivantes :

Réservoir, compresseur, canalisation, moteur, groupe de conditionnement, manomètre

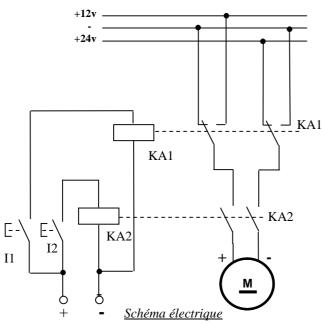
2. Rôle de chacun de ces éléments : (...../0,75 PT) Régulateur de pression : \geq Lubrificateur: Filtre: 1/8

Branche: Sciences Maths B

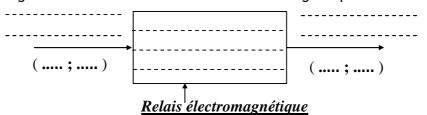
: G.S. Anisse Ain Sebaâ

Professeur: M.Marhraoui Matière : Sciences de l'ingénieur <u>Date</u>: 18/12/2014

Durée: 2h


3. Donner deux avantages du relais statique par rapport au relais elecromagnétique :

a-


b-(..../0,**5** РТ)

Exercices N°1 : (...../2pts)

Soit un moteur à courant continu alimenté par deux tensions $U_1=12V$ ou $U_2=24V$ par l'intermédiaire de deux relais électromagnétiques. Ces derniers sont commandés par deux boutons poussoirs I₁ et I₂.

a) Compléter l'actigramme du niveau A-O du Relais électromagnétique :

...../0,5 pt

b/ Compléter le tableau des étapes suivants par M ou A :

Étape	I_2	I ₁	Sens avant de rotation (M – A)	Sens arrière de rotation (M – A)	Vitesse lente (M – A)	Vitesse rapide (M – A)
Etape 0	R	R				
Etape 1	Т	R				
Etape 2	R	R				
Etape 3	R	Т				
Etape 4	Т	Т				
Etape 5	R	Т				

...../1,5 pts

<u>Branche</u>: Sciences Maths B <u>Lycée</u>: G.S. Anisse Ain Sebaâ

<u>Professeur</u>: M.Marhraoui <u>Matière</u>: <u>Sciences de l'ingénieur</u>

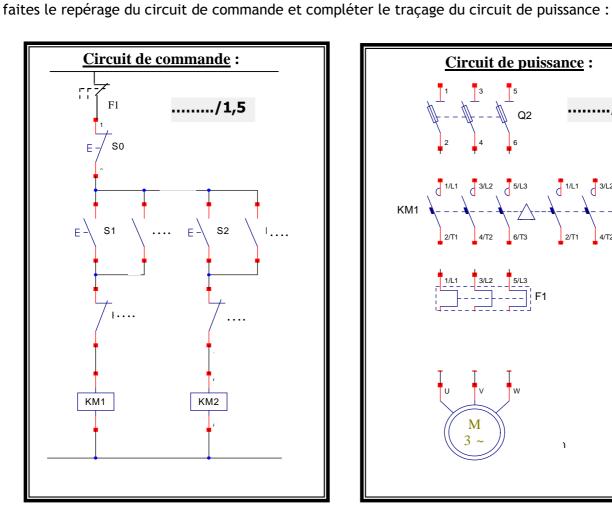
<u>Date</u>: 18/12/2014

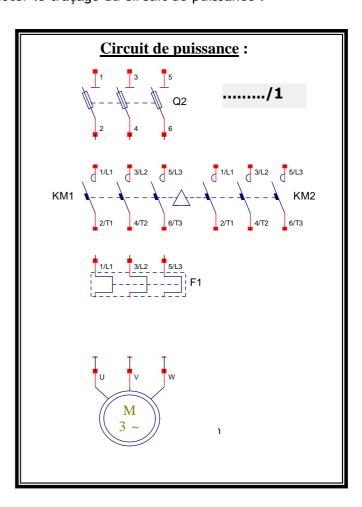
<u>Durée</u> : 2h

Exercices N°2: (....../7,5pts)

Soit un moteur asynchrone triphasé à cage dont la plaque signalétique est schématisé ci-dessous. Il est alimenté par le réseau triphasé 400V; 50 Hz.

Z	32S T	€				
IP55	IK08		cl.F	40°C	S.S1	kg 39
V	, T	Hz	min -1	kW	cos φ	Α
	30 00 15	50 - - - 60	1420 1430 1430 1435 1710	5.50 - - - 6.60	0.85 0.82 0.82 0.80 0.86	12.00 20.70 11.90 11.70 12.30
———		-	1730		0.84	11.90


Α/	' 1- Quel couplage doit on réaliser des enroulements statoriques pour que le mo	oteur	fonctionne
	correctement:	(/0,25PT)
2-	Quel est la valeur de la tension supportée par chaque enroulement :	.()	/0,25PT)
3-	Quel est la valeur de la vitesse nominale du moteur N en (tr/min) :	(/0,25PT)
4-	Donner la valeur de la puissance utile mécanique Pu :	.()	/0,25PT)
5-	Quel la valeur du courant nominal absorbé par le moteur :	(/0,25PT)
6-	Calculer la valeur de la puissance active électrique absorbée par le moteur :	•••••	
		(/0,5PT)
7-	Quel est alors la valeur de la somme des pertes dans $$ le moteur Notée Σ_{Pertes} :		
8-	En déduire, alors, la valeur du rendement nominal en pourcent du moteur η(%):		
_	Ouel est la référence du moteur •		


B/Le moteur est conçu pour qu'il puisse tourner dans les deux sens de marche (Marche avant et Marche arrière). Pour l'obtention du sens arrière on va inverser la phase 1 et la phase 3. La commande des deux de marche, se fait par les boutons poussoirs S_1 et S_2 , par contre l'arrêt se fait par le bouton poussoir S_0 .

Branche: Sciences Maths B Lycée : G.S. Anisse Ain Sebaâ

Professeur: M.Marhraoui Matière : Sciences de l'ingénieur

1- Donner les noms des contacts auxiliaires des deux contacteurs utilisés dans le circuit de commande,

<u>Date</u>: 18/12/2014

<u>Durée</u> : 2h

excitées en même temps :	
·	
circuit entre les phases 1 et 3 si par accident les bobines KM1 et KM2 des deu	ix contacteurs sont
2- Quel est la solution que nous avons adoptée dans le circuit pour éviter l'appa	arition d'un court-

3-Sachant que les deux bobines des contacteurs utilisés KM1 et KM2 sont alimentées par une tension alternative 48V- 50 Hz, Choisir les références et le calibrage des appareillages électriques utilisés en utilisant le document constructeur de la page 5/8:/2

	Référence	Calibre ou réglage	taille
Contacteur			
Sectionneur			
fusible			
Relais thermique			

Branche: Sciences Maths B Lycée : G.S. Anisse Ain Sebaâ

Matière : Sciences de l'ingénieur <u>Professeur</u>: M.Marhraoui

<u>Date</u>: 18/12/2014

Durée: 2h

TABLEAU DE CHOIX DES APPAREILLAGES ELECTRIQUES

				Contacteur	Relais the	rmique	Protection			
	Mot	eur		tripolaire				Sectionneur	Sectionneur disjoncteur	
220V,	/230V	380V,	/400V			Zone de	Calibre			
P (Kw)	In (A)	P (Kw)	In (A)	Référence	Référence	réglage (A)	(A)	Taille	Référence	Référence
-	-	0,37	1,03	LC1-D09	LR2-D1306	1 1,6	2	10 x 38	LS1-D2531	GK2-CF06
-	-	0,55	1,6	LC1-D09	LR2-D13X6	1,25 2	4	10 x 38	LS1-D2531	GK2-CF07
0,37	1,8	0,75	2	LC1-D09	LR2-D1307	1,6 2,5	4	10 x 38	LS1-D2531	GK2-CF07
0,55	2,75	1,1	2,6	LC1-D09	LR2-D1308	2,5 4	6	10 x 38	LS1-D2531	GK2-CF08
0,75	3,5	1,5	3,5	LC1-D09	LR2-D1308	2,5 4	6	10 x 38	LS1-D2531	GK2-CF08
1,1	4,4	2,2	5	LC1-D09	LR2-D1310	4 6	8	10 x 38	LS1-D2531	GK2-CF10
1,5	6,1	3	6,6	LC1-D09	LR2-D1312	5,5 8	12	10 x 38	LS1-D2531	GK2-CF12
2,2	8,7	4	8,5	LC1-D09	LR2-D1314	7 10	12	10 x 38	LS1-D2531	GK2-CF14
3	11,5	5,5	11,5	LC1-D12	LR2-D1316	9 13	16	10 x 38	LS1-D2531	GK2-CF16
4	14,5	7,5	15,5	LC1-D18	LR2-D1321	12 18	20	10 x 38	LS1-D2531	GK2-CF21
-	-	9	18,5	LC1-D25	LR2-D1322	17 25	25	10 x 38	LS1-D2531	GK2-CF22
5,5	20	11	22	LC1-D25	LR2-D1322	17 25	25	10 x 38	LS1-D2531	GK2-CF12
7,5	27	15	30	LC1-D32	LR2-D1353	23 32	40	14 x 51	GK1-EK	GK3-EF40
-	-	15	30	LC1-D32	LR2-D1355	28 36	40	14 x 51	GK1-EK	GK3-EF40
10	35	18,5	37	LC1-D40	LR2-D1355	30 40	40	14 x 51	GK1-EK	GK3-EF40
11	39	-	-	LC1-D40	LR2-D1357	37 50	63	22 x 58	DK1-FB23	GK3-EF65
-	-	22	44	LC1-D50	LR2-D1357	37 50	63	22 x 58	DK1-FB23	GK3-EF65
15	52	25	52	LC1-D50	LR2-D1359	48 65	63	22 x 58	DK1-FB23	GK3-EF65
18,5	64	30	60	LC1-D65	LR2-D1361	55 70	80	22 x 58	DK1-FB23	GK3-EF65
22	75	37	72	LC1-D80	LR2-D1363	63 80	80	22 x 58	DK1-FB23	GK3-EF65
30	85	45	85	LC1-D95	LR2-D1365	80 93	100	22 x 58	DK1-FB23	GK3-EF80

Commande de moteurs à cage - Démarrage direct

Température ambiante ≤ 55°C

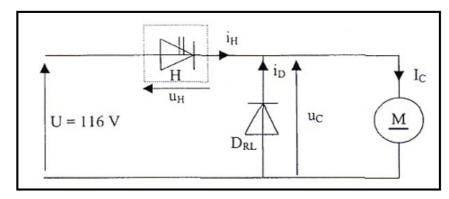
Référence de l'alimentation de la bobine :

Tansion (V) Contacteur	24	48	115	230	400	440	500
LC1 D09 D150 (50/60Hz)	В7	E7	FE7	P7	V7	R7	-
LC1 D40 D115							
50 Hz	B5	E5	FE5	P5	V5	R5	S5
60 Hz	В6	E6	-	-	-	R6	-

Branche: Sciences Maths B

Lycée : G.S. Anisse Ain Sebaâ

Professeur: M.Marhraoui


Matière : Sciences de l'ingénieur

<u>Date</u>: 18/12/2014

Durée: 2h

Exercices N°3: Etude du hacheur série (....../4pts)

Le réglage de la vitesse d'un moteur précédent du monte-charge se fait à l'aide d'un convertisseur statique dite Hacheur série (voir figure ci-dessous).

On supposera que le courant I_C qui le traverse est parfaitement continu.

L'interrupteur H est alternativement fermé ou ouvert à la fréquence f. Sur la durée d'une période T, H est fermé sur l'intervalle de temps $[0; \alpha T]$ et ouvert sur $[\alpha T; T]$.

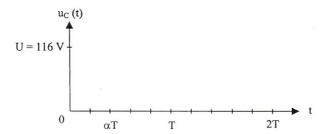
 α est compris entre 0 et 1 et T = 20 μ s.

1. Quel est la conversion réaliser par un hacheur ?	(/0,25PT)
2. Quel nom porte α ?	(/0,25PT)
3. Donner son expression :	(/0,25PT)
4. Quel est le rôle de la diode D _{RL} :	
	(/0,25PT)
5. Sur l'intervalle de temps [0 ; α T],	
a) quelle est la valeur de la tension aux bornes de l'interrupteur H noté $U_H(t)$?	
	(/0,25PT)
b) Donner la valeur $\mathbf{u}_{c}(\mathbf{t})$ au cours de cet intervalle de temps,	
	(/0,25PT)
c) donner l'état de la diode D_{RL} (passante ou bloquée) :	
	(/0,25PT)
6. Sur l'intervalle de temps [αT ; T],	
a) donner l'état de la diode D _{RL} (passante ou bloquée) ?	(0.25)
	(/U,Z5PT)
b) Donner la valeur u_c(t) au cours de cet intervalle de temps,	((0.3Ept)
	(/0,25P1)
c) donner la valeur $\mathbf{u}_{H}(\mathbf{t})$ au cours de cet intervalle de temps :	(/0.25PT)

Branche: Sciences Maths B

: G.S. Anisse Ain Sebaâ

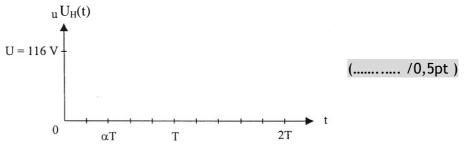
Professeur: M.Marhraoui


Matière : Sciences de l'ingénieur

<u>Date</u>: 18/12/2014

Durée: 2h

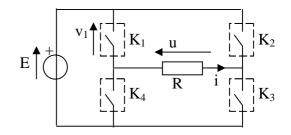
(...... /0,25pt)


7. Compléter le document ci-dessous en traçant la courbe représentant Uc(t) :

8. Donner l'expression de uc_{moy} valeur moyenne de uc(t) et la calculer :

.....(......(...../0,5PT)

9. Compléter le document ci-dessous en traçant la courbe représentant U_H(t):


10. Déterminer la valeur maximale de la tension que doit supporter le hacheur noté U_{Hmax} :

Exercices N°4: Etude d'un convertisseur statique (.........../2,5pts)

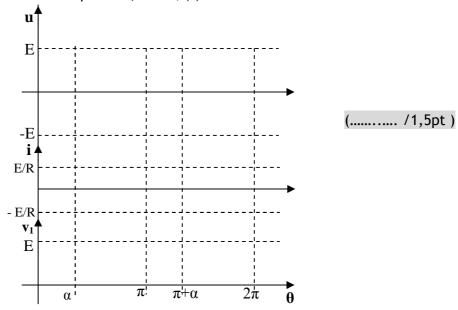
Un onduleur est constitué de quatre interrupteurs électroniques commandés.

Le chronogramme indique les états fermés (F) et ouvert (O) des interrupteurs.

	0 α	α π	π π + α	$\pi + \alpha - 2\pi$
K1	F	F	О	F
K2	F	О	0	О
К3	0	F	F	О
K4	О	О	F	F

E est une source de tension continue parfaite de valeur 200 V, la charge est une résistance $R = 100 \Omega$. α désigne l'angle de décalage, il vaut $\pi/3$.

1 - Quel est le nom de ce convertisseur :


2- Quel est la conversion réaliser par convertisseur ?

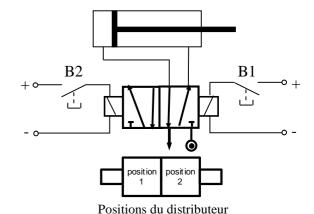
Branche: Sciences Maths B : G.S. Anisse Ain Sebaâ

Professeur: M.Marhraoui Matière : Sciences de l'ingénieur <u>Date</u>: 18/12/2014

Durée: 2h

3 - Tracer sur le document réponse u, i et v₁ (t).

4 - Déterminer la valeur moyenne de u (t).


Exercices N°5 : Etude d'un Verin (...../2pts)

Soit un vérin alimenté par l'intermédiaire d'un distributeur dont les positions sont commandée par deux boutons poussoirs B1 et B2 comme le montre le schéma ci-dessous.

1/ compléter le tableau suivant en marquant : 1 ou 2 pour la position du distributeur ; E ou S pour Entrée ou Sortie pour la tige du vérin, complétez le tableau ci-dessous, relatif au schéma suivant :

étape	В1	B2	Position du distributeur (1 ou 2)	Tige du Vérin (E ou S)
étape 0	R	Т		
étape 1	R	R		
étape 2	Т	R		
étape 3	R	R		

(..... /1pt)

2/ a- Quel le nom du distributeur utilisé :