الحلول

ترين1:

1. عد الأتماط الورائية وعد المظاهر الشارجية متساوي ، إن الطيلين متساق السيدة ويمكن حسب تريداتهم سيلترة :

f(AceR)= ((2x66)+130)/2x416=0,315

f(AceS)=1-0, 315=0,685

2- العظهر الخارجي البعوضات Acel/Acel مساوي العظهر الخارجي البعوضات Acel/Acel (حساسة المبيد) إن Acel/Acel العلام المراجعة البعوضات تموت إن الكمية المركبة من الأنزيم التشط غير كافية.

3. لدينا هنا حالة السيادة ، مظهرين خارجيين و 3 أنماط وراثية ، لدلك تقترض على أن الساكنة في حالة توازن H-W

f(AceR)=p, f(AceS)=q

Ace [§] Ace [§]	Ace ⁴ Ace ⁸	Ace*/Ace*
q²	2pq	P ²
[9	5]	[R]
35	50	66

 $p^2 = 66/416 = 0,158 p = \sqrt{0,158} \approx 0,4$

q=1-0,4=0,6

4. لا يمكنه لغنيار التوازن لكونه افترضه مسبقا وسيج حتما التوازن ، كما أن المعطيات لا تنضمن المطومات بالقر الكفي ويترجم ذلك بغيابا ddl لإنجاز لغنيار X2 أو ما يصطلح عليه بمعيار pearson

التمرين 2:

	AA	Aa	aa	 AA	AB	BB
ç	0,1	0,4	0,5			
ರೆ	0,7	0,2	0,1			

لأنتا لا تطم إذا كان هنك تساوى السيدة

مسلب تريد الأمشاج في الجيل n

$$pQ = \frac{(2 \times 0.1) \cdot 0.4}{2} = 0.3$$
 $qQ = 1-0.35 = 0.7$
 $pQ = \frac{(2 \times 0.7) + 0.2}{2} = 0.8$ $qQ = 1-0.8 = 0.2$

تردد الأنماط الوراثية في الجيل n+1:

AA
 Aa
 aa

$$p \circ \times p \circ \circ$$
 $p \circ \times q \circ \circ \circ + p \circ \times q \circ \circ$
 $q \circ \times q \circ \circ$

 0,24
 $0,06$
 $+$ 0,56
 0,14

 $0,62$

تم تحميل <mark>سذا الملف من موقع Talamidi.com حساب تردد الأمتياج في الجيل n+1</mark>

$$p_{i+1} = \frac{(2 \times 0.24) + 0.62}{2} = 0.55$$

$$q_{i+1} = \frac{(2 \times 0.14) + 0.62}{2} = 0.45$$

تساوى تريدي - أ في الحيل الأول

تريد الأنماط الوراثية في الجيل n+2

AA Aa aa P++12 $2 \times p_{z+1} \times q_{z+1}$ Q++12 0.3025 0.495 0.2025

- حساب تريد الأمشاج في الجيل n+2

$$P_{x=2} = \frac{(2 \times 0,3025) + 0,495}{2} = 0,55$$

$$q_{x=2} = \frac{(2 \times 0,2025) + 0,495}{2} = 0,45$$

حصول توازن H-W في الجيل n+2 (البات الترددات)

تمرين 3:

- حساب تردد الطيلات عند 💍

Pw-d=170/200=0,85

Pw = 30/200=0,15

- حساب تردد الطيلات في الساكنة بأكملها نَفْتَرِضَ أَن الساكلة في حالة توارَّنَ H-W وأن تريد أَن عريدي ويذلك :

> Pw+2=0.85 $P_{W} \Omega = 0.15$ في هذه الحالة تردد الإتاث بعيون بيضاء هو: $f(Q[w]) = P_w Q^2 = 0.0225 = 2.25\%$

> > : 4 تمرين

	[ma+]	[ma-]	المظاهر الخارجية
المجنوع = 100	23 X ^{ma+} Y	77 X™Y	الذكور
المجموع = 100	56 X ^{ma+} X ^{ma+} X ^{ma+} X ^{ma-}	44 X ^{ma} ·X ^{ma} ·	الأنت

إذا كان لدينا توازن H-W فإن التردد عند - = التردد عند $f(X^{ms}-\vec{a})=77/23+77=0.77$ تم تحميل هذا الملف من موقع Talamidi.com يتم تحميل هذا الملف من موقع P² 2pq q² ياتسية تهذه المورثة تستعن P² 2pq q² ياتسية تهذه المورثة تستعن

وعليه q2=44/100=0,44 ; f(Xm2-2)=q=0,66 ; p=1-q=0,34

اعتمادا على هذه المسابلة:(f(X^ma-2) ≠ (£-4m);

إنن ليس هنك توازن ، لنحسب اختبار التطابقية

إذا كانت هذه الساكنة في توازن H-W فإن

$$f(X^{ma} \cdot g) = q \cdot Q = f(X^{ma} \cdot g) = q \cdot Q = 0.77 \quad p = 0.23$$

	X112-X112-	Xma-Xma-	XmXm.
	0,232=0,05	2x0,23x0,77=0,35	0,772=0,6
العدد المنتظر		40	60
الحد الملاحظ		56	44

3,01=14 العد الملاحظ - العد المنتظر X2 = 5

لحد المتنظ

α = 5% وddl = عدد الأتماط الوراثية - عدد الطيلات α = 5%

X² المستظمة من الجنول إنن تساوي : 3.84 . ويما أن X² المحسوبة أكبر من X² المرجعية تعتبر فرضية التساوي غير مقبولة وتستنتج أن أفراد هذه الساكنة لا تستجيب ثقانون Hardy-weinberg

يمكن فقط حساب تربد الطيلات عند الذكور ، أما التربد عند الإناث فيستحيل معرفته .

تمرين 5:

ð	[قصير] 120	1:	[طویل] 210	المجموع=330
	CC	Cc	cc	4
	p²	2pq	q²	ž.
Q	[قصير]	طويل]]	

إذا كانت الساكنة في توازن H-W بالنسية لهذه المورثة ، فإن :

$$q^2 = 210/330 = 0,64$$
 $f(c) = q = 0,80$ $f(C) = p = 1-q = 0,2$; $f_0^2 = f_2^2$

جدول التزاوج

	XH	X
	1%	≈1
X ^R	XHXH	XHX
Y	X ^H Y	XY

$$f([\circlearrowleft H]) = f(X^{\Xi}Y) : 1\% \times 1 = 1\%$$

 $f([\circlearrowleft H]) = f(X^{\Xi}X^{\Xi}) : 1\% \times 1\% = (0,01)^{2} = 0,01\%$

: 7 سرين

$$aa = 2 Aa$$

 $q^2 = 2 \times 2pq$
 $q^2 = 4pq$
 $q^2 = 4q(1-q)$
 $q^2 = 4q - 4q^2$
 $5q^2 = 4q$
 $5q = 4$
 $q = 4/5$

[crépu]	[frisé]	[normal]
M [†] M [†]	M ^N M ^F	M ^N M ^N
50 البحوع = 1000	800	150

ترند لطيلات

f(M*)=(2×50+800)/2×1000=0,45=p f(M*)=(2×150+800)/2×1000=0,55=q

إذا كانت الساكنة في توازن H-W بالنسية لهذه المورثة ، فإن

=	[crépu]	[frisé]	[normal]
	M'M'	M M	M ^x M ^x
	$\mathbf{p}_{\mathbf{p}}^{t}$ \mathbf{N}	2pq 2pqN	q [‡] q'N
	202,5	495	الحد المنتظر 302,5
	50	800	الحد الملاحظ 150
	I		

لحد المنتظ

ddl = 3-2=1 % a = 5 وddl= عد الأنماط الوراثية - عد الطيلات

X² المستظمة من الجدول إنن تساوى : 3.84 . وبما أن X² المحسوبة أكبر من X² المرجعية تعبر فرضية التساوى غير مقبولة وتستنتج أن قراد هذه الساكنة لا تستجيب لقانون Hardy-weinberg

تمرين 9: سطعة قي توازن:

ئدينا :

$$[A] + [O] = I^{A}I^{A} + I^{A}i + ii = p^{2} + 2pr + r^{2} = (p+r)^{2}$$

$$(p+r)^{2} = \frac{[A] + [O]}{[0+r]^{2}} \Leftrightarrow p+r = \sqrt{\frac{A+O}{2}}$$

$$\Leftrightarrow p = \sqrt{\frac{A+O}{2}} - r$$

$$[B] + [0] = I^BI^B + I^Bi + ii = q^2 + 2qr + r^2 = (q+r)^2$$

$$q = \sqrt{\frac{[D] \cdot [Q]}{r}}$$

p+q+r=1

[A] 36% [B] 12% [AB] 3% [O] 49%
$$\hat{r} = \sqrt{0.49} = 0.7 \qquad \hat{p} = \sqrt{0.49 + 0.36} - 0.7 = 0.22 \qquad \hat{q} = \sqrt{0.49 + 0.12} - 0.7 = 0.08$$

$$\hat{q} = \sqrt{0.49 + 0.12} - 0.7 = 0.03$$

3- % لمتشابهي الاقتران

-2

$$[A] = I^A I^A / [A]$$

= $p^2 / p^2 + 2pr$
= 0.135 ; 13.5%

التمرين 10:

1- حسف تربد لطيلات:

حسك تردد الأتماط الوراثية المنتظرة حسب فاتون H-W:

 $F(AA): p^2 = (0.54)^2 = 0.2916$

 $F(AB) = 2pq = 2 \times 0.54 \times 0.46 = 0.4968$

F(BB): q2=(0.46)2=0.2116

2-حساب المظاهر الخارجية المنتظرة حسب قانون H-W:

AA: p2N+0.2916x6129=1787.2

AB: 2pqN = 0.4968 x 6129 = 3044.9

BB: q2N= 0.2116 x 6129 = 1296.9

استنتاج: مما سبق و انطلاقا من مقارنة الأعداد النظرية بأعداد المظاهر الخارجية ينضح أن هذه الساكنة خاضعة لقانون . H-W

تمرين 11 :

-1

04	[S]	[ST]	[T]	
التمط الوراثي	$A^{S}A^{S}$	$\mathbf{A}^S\mathbf{A}^T$	$\mathbf{A}^{T}\mathbf{A}^{T}$	
العدد الملاحظ	36	27	18	

$$f(A^5) = \frac{36 \times 2 + 27}{2 \times 80} = 0.61$$
 $f(A^7) = \frac{18 \times 2 + 27}{2 \times 80} = 0.39$

2-توجد اساكته عي حلله توازن

	[S]	[ST]	[T]
5	p²	2pq	\mathbf{q}^2
العدد النظري	29.40	38.19	12.40
العدد الملاحظ	ACM 244 CC1	27	18

 $X^2 = 6.87$

α = 5% وddl = عد الأتماط الوراثية - عد الطيلات | a = 5.2

X² المستخلصة من الجول إن تساوي : 3.84 . ويما أن X² المحسوبة أكبر من X² المرجعية تحير فرضية التساوي غير مقبولة وتستنتج أن قراد هذه الساكنة لا تستجيب لقانون Hardy-weinberg أو أن المحد الوراثي أكثر تطيدا مما تم التراضه

. مورئة بثلاث طيلات

ويسودان على ${f A}^0$ هذا التحديد الوراثي يمكن من تقسير مشكل الأقراد ${f A}^{T}={f A}^{S}$

الأبعة الناقصة

 $f(A^S)=p$; $f(A^T)=q$; $f(A^O)=r$

	[S]				[ST]	[0]	
1	SS	so	TT	TO	ST	00	î .
	\mathbf{p}^2	2pr	\mathbf{q}^2	2qr	2pq	r²	
العد الملاظ		36	3	18	27	4	$\Sigma = 85$

إذا كانت الساكنة في توازن H-W بالتسبة لهذه المورثة ، فإن

$$r^{2} = f([O]) = 4 / 85 ; \quad \hat{r} = 0,22$$

$$[S] + [O] : p^{2} + 2pr + r^{2} = (p+r)^{2} ; \quad \hat{p} = \sqrt{[S] + [O]} - r = \sqrt{\frac{49}{100}} r = 0.40$$

$$[T] + [O] : q^{2} + 2qr + r^{2} = (q+r)^{2} ; \quad \hat{q} = \sqrt{[T] + [O]} - r = \sqrt{\frac{25}{100}} r = 0.29$$

$$!!! \quad \hat{p} + \hat{q} + \hat{r} = 0.97 !!!$$

هذا الانحراف عن القيمة 1 راجع إلى خطأ في طريقة تحديد العينة وإلى الطريقة المعتمدة لتقدير الترددات p,q,r والتي لم تأخذ بعين الاعتبار الأقراد [ST] "

تم تحميل هذا العلف من موقع Talamidi.com 4ـ تعم يمكن لختيار التوازن إذا ما اعتمدتا فرضية مورثة ب 3 طيلات ، تحسب الحد المنتظر القنات الأربع

	f:	S)	f	Π	[ST]	[0]	
	SS	so	TT	то	ST	00	
	\mathbf{p}^2	2pr	\mathbf{q}^2	2qr	2pq	r ²	
العدد الملاحظ	3	6	1	8	27	4	$\Sigma = 84$
il.	37	7.07	19	9.07	23.07	4.80	

$$X^2$$
 =0,98 $ddl = 3.2 = 1$ و $\alpha = 5$ و $\alpha = 5$

X² المستخلصة من الجدول إن تساوي : 3.84 . ويما أن X² المحموية أصغر من X² المرجعية تحير غرضية مورثة ب 3 طيلات مقبولة ونستنتج أن قراد هذه الساكنة تستجيب لقلون Hardy-weinberg

تمرين 12 :

A, B, C لايتا 3 حليلات:

$$f(A^1) = \frac{2x_{25}+113+9}{2 \times 268} = 0.32$$

$$f(A^2) = \frac{2406+113+15}{2 \times 268} = 0.63$$

$$f(A^3) = \frac{9+15}{2 \times 268} = 0.05$$

إذا كانت الساكنة في توازن Hardy-weinberg

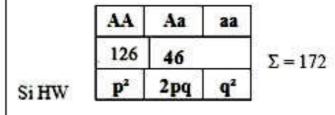
3	A^1A^1	A^2A^2	A^1A^2	A ¹ A ³	A^2A^3	A^3A^3
Fr génotyp theo	p ²	\mathbf{q}^2	2pq	2pr	2qr	r²
Eff theo:	p^2N	q^2N	2pqN	2prN	2qrN	r ² N
eff theo	27.44	106.37	108.06	8.58	16.88	0.67
eff obs	25	106	113	9	15	0

 $X^2 = 1,35$ ddl = 6-3=3 $\alpha = 5\%$

X² المستخلصة من الجلول إنن تساوي : 7,81 . ويما أن X² المحسوبة أصغر من X² المرجعية تستنتج أن أفراد هذه الساكنة تستجيب لقانون Hardy-weinberg

ملحوظة : المحسوب غير ملاتم لأن عدد إحدى الفنات أصغر من 5

: 13مرين


1-تردد الطيلات: لدينا حالتين ممكنتين

A>a J A<a

A<a

A>a

	AA	Aa	aa	
	126		46 Σ	$\Sigma = 172$
Si HW	p ²	2pq	q²	

$$q^2 = 46/172$$
; $q = \sqrt{\frac{46}{1/2}} = 0.517$
 $p = 1 - 0.517 = 0.483$

$$p^2 = 126 / 172$$
; $p = \sqrt{\frac{126}{1/2}} = 0.855$
 $q = 1 - 0.73 = 0.145$

-إذا فترضنا مولود غير شرعي إذا كفت الام ذات فزحيه غيرملونة (aa, P=q²) واب بقزحيه غير ملونه (aa,P=q²) ومولود بقزحيه بنيه اللون (P=p) إنن احتمال ولادة غير شرعيه هو :

> P=q²xq²xp=pq⁴ ق م ذات فرحیه بنون تلون (q²

.. ام ذات فرّحيه بدون تلون (aa, P=q²) واب يقرّحيه غير ملونه (aa,P=q²) لكي يكون للمولود قرّحيه بنيه اللون يجب ان يكون المشيح الصادر عن الحقيقي A. . إذن الاب AA (P=p²) في P=2pq) في P=2pq)

$$=> P(4)$$
 ا المواجد غير شرعي) $= q^2 \times q^2 \times ((p^2 \times 1) + (2pq \times 1))$
 $= q^2 \times q^2 \times (p^2 + pq)$
 $= q^2 \times q^2 \times p(p+q)$
 $= pq^4$
 $= 0,025 \implies 2,5\%$

نمرين 14:

للمصول على مثل هذه العائلة ، يجب ان يكون الابوين mM :

$$\frac{2pq}{p^2+2pq}$$
 x $\frac{2pq}{p^2+2pq}$ =0,572

	M	m
M	M/M	M/m
m	M/m	m/m

ڪي مئل ڪده العاظم

 $P(1/2) = 0.57^2 \times 3 \times (3/8 \times 3/8 \times 1/8)$ انثى مفرزة و تكرين غير مفرزين

 $=0,017 \rightarrow 1,7\%$

A>a
$$q = 0,22$$

ويلة	[ذرة ط	[ذرة غصيرة]
AA	Aa	aa
p²	2pq	q²

يجب ان تكون الذرة الطويلة Aa للحصول على خلف قصير

$$\frac{2 \text{ pq}}{p^2 + 2pq} = 0.36$$
× $\frac{2 \text{ Aa}}{p^2 + 2pq} = 0.36$
× $\frac{2 \text{ pq}}{p^2 + 2pq} = 0.36$

التزاوج Aa × Aa سيكونون قصار Aa × Aa مسيكونون قصار P= 1/4 × (0,36)² = 0,032 → 3,2%

تمرين: 16

تمنية لطفرة u /المشيج/الجيل

$$q_{n+1} = q_n + up_n$$

 $p_{n+2} = p_{n+1}(1-u)$
 $= p_n(1-u)^2$

اذن

$$p_{n+x} = p_n(1-u)^x$$

سيكون للطفرة وحدها تقير ضعيف على الساكنات و ينبغي أن يكون هناك عدد كبير من الأجيال لكي تكون التغييرات ملموسة إ في حين تعتبر الطفرات عاملا مهما لأنها تحدث التغيرية وينتسيق مع عامل آخر، (الانتقاء مثلا) يمكن لتردد الحليل الطافر أن يحافظ عليه (وقد يرتفع تردده إ حالة مقاومة مبيدات الحشرات)

$$P_{n+1} = p_n$$
 انن $\Delta p = P_{n+1} - p_n = 0$ في التوازن: $\Delta p = P_{n+1} - p_n = 0$

$$p_n = p_n - up_n + vq_n$$
 الأن
 $Up_n = vq_n$
 $Up_n = v(1 - p_n)$
 $Up_n = v - vp_n$
 $p_n(u+v) = v$
 v
 $p_n = \frac{v}{u+v}$

إنن : فتريد التوازن للطيلين هو :

تمرين 18

ليكن N_o الحد الفعل : يحي حجم سكنة مثالية وضعت تحث تأثير الانحراف، بحيث إن سلوكها الوراثي وتطورها سيكون هو نفسه عند السكنة المدروسة . حيتما يكون انتشار الجنسين غير متساوي، نقارب N_o بالصيغة التالية :

$$Ne = \frac{4N_m N_f}{N_m + N_f} = \frac{4 \times 1 \times \infty}{\infty} = 4$$

أما ساكنة الإنك فهي لامتناهية.

تمرین 19

التمرين 20

للمورثة حليلين، A و a إذا كان لقرد متشابه الاقتران aa يموت لقرد في الرحم

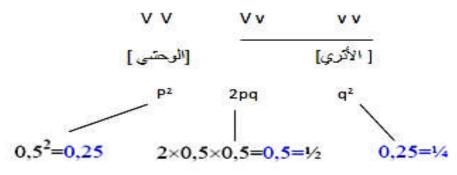
$$AA$$
 Aa aa p^2 $2pq$ q^2 p^2 \times

إذا لم يكن وجود ل aa ، فالقسم الوراثي الوحيد الذي يوجد فيه الحليل a هو قسم الأماط المختلفة الافتران،


للحصول على أكبر عدد من الطبلات a ينبغي أن يكون أكبر عدد من الأقراد المختلفي الاقتران: «100 Aa 100 وتردد الطبل a الأقصى=%50 استنتاج: إذا وصل الطبل المعيت التردد الأقصى، فسوف تتكون السائلة إلا بمختلفي الاقتران

التمرين 21

للمورثة طيلين: ٧ و٧ ٧٥٧


في القفص توجد الساكنة 1/2 [وحشي] 1/2 x [أثري] نزيل الآباء في كل جيل والايوجد أي تراكب بين الأجيال

أ- نتم النزاوجات بالصدقة لا يوجد أي انتقاء للمورثة العدد كبير جدا الطفرة شيه منعمة توازن H-W في جيل واحد

ييقى فقط [الأثري] إذا ٧٧ وهكذا يبقى الطيل ٧ فقط بتردد (٥=(٢) و 1 = (f(v) ويالنتالي فالأجيال الموالية ستكون كلها ٧٧ ويبقى هذا صالحا كذلك إذا ما أرحنا الغطاء في كل جيل

ت- إذا كان v سقدا : إذا طيق الانتقاء على جيل واحد

11 يطير [الأثري] 3/4 يبقى

[الوحثى] 1/4 يطير

الجيل n

و٧٧ في الساكلة

سوف لن يبقى إلا ٧٧

 $Vv: \frac{1}{2} / \frac{3}{4} = \frac{1}{2} * \frac{4}{3} = \frac{2}{3}$ $vv: \frac{1}{4} / \frac{3}{4} = \frac{1}{4} * \frac{4}{3} = \frac{1}{3}$

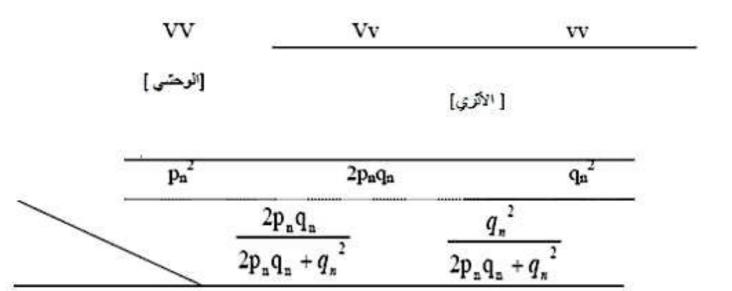
مساب تربد الطيلات في الجيل n

$$f(v) = \frac{2 \times \frac{1}{3} + \frac{2}{3}}{2} = \frac{\frac{4}{3}}{2} = 2/3$$

$$f(V) = \frac{\frac{2}{3}}{2} = 1/3$$

تريد الأتماط الوراثية في الجيل n+1

$$\frac{\text{VV}}{\text{p}^2}$$
 $\frac{\text{Vv}}{\text{pp}}$ $\frac{\text{vv}}{$


مسلب تريد الطيلات في لجيل1+ n

$$f(v) = \frac{2 \times 4/9 + 4/9}{2} = \frac{12/9}{2} = 6/9 = 2/3$$

$$f(V) = \frac{2 \times 1/9 + 4/9}{2} = \frac{6/9}{2} = 3/9 = 1/3$$

نعود إلى توازن H-W بعد جيل. لا تتغير الترددات في الجيل الموالي بعد الانتقاء

تظريا إذا طبق الانتقاء في كل جيل

تردد الطيلات بعد الانتفاء (على مستوى الأمشاج وعلى مستوى الجيل)

$$p_n = \frac{2pq}{2 \times (2pq + q^2)} = \frac{p}{2p + q} = \frac{p}{2p + (1 - p)} = \frac{p}{1 + p}$$

$$q_n = \frac{2q^2 + 2pq}{2 \times (2pq + q^2)} = \frac{q + p}{2p + q} = \frac{1}{p + 1}$$

تردد الأتماط الوراثية في الجيل n+1

vv	Vv	vv		
 [الوحتى]	[الأثري]			
p _{n-1}	$2p_{n+1}q_{n+1}$	q _{n+1} ²		

تردد الطيلات بعد الانتقاء (على مستوى الأمشاج)

$$p_{n+1} = \frac{p_n}{1+p_n} = \frac{\frac{p}{p+1}}{\frac{p}{p+1}+1} = \frac{\frac{p}{(p+1)}}{\frac{p+(p+1)}{p+1}} = \frac{p}{p+1} + \frac{p+1}{2p+1} = \frac{p}{2p+1}$$

$$q_{n-1} = \frac{1}{p_n+1} = \frac{1}{\frac{p}{p+1}+1} = \frac{1}{\frac{p+(p+1)}{p+1}} = \frac{p+1}{2p+1}$$

$$p_{n+1} = \frac{1}{p_{n}+1} = \frac{1}{\frac{p}{p+1}+1} = \frac{1}{\frac{p+(p+1)}{p+1}} = \frac{p+1}{2p+1}$$

$$p_{n+1} = \frac{p_n}{1+p_n} = \frac{\frac{p}{p+1}}{\frac{p}{p+1}} = \frac{\frac{1}{p+(p+1)}}{\frac{p}{p+1}} = \frac{p}{p+1} * \frac{p+1}{2p+1} = \frac{p}{2p+1}$$

$$q_{n+1} = \frac{1}{p_n + 1} = \frac{1}{\frac{p}{p+1} + 1} = \frac{1}{\frac{p + (p+1)}{p+1}} = \frac{p+1}{2p+1}$$

البحث عن التوازن

$$\Delta p = p_{n+1} - p$$

$$= \frac{p}{p+1} - p = \frac{p-p(p+1)}{p+1} = \frac{p-p^2-p}{p+1} = \frac{-p^2}{p+1}$$

$$\Delta p = p_{n+1} - p$$

$$= \frac{p}{p+1} - p = \frac{p-p(p+1)}{p+1} = \frac{p-p^2-p}{p+1} = \frac{-p^2}{p+1}$$

تكون في حقة توازن حينما تكون D=0 إذا حينما تكون p=0 لمية من التوازن . f(V)=0 ميقصى الطبيل الوحشي مع مرور الزمن . في التوازن ، D=(V)=0

تمرین 22

الجيل n	AA	Aa	aa
لتفترض أنه من الولادة يوجد الأفراد في تناسب مع H-W	p_{n^2}	$2p_nq_n$	$q_{n^2} = 0.16 \qquad q_{n} = 0.16$ $p_{n} = 0.16$
غيمة الانتقاءw (غي تناسب مع نسد البقاء=) aux taux de survie)(غي تناسب مع نسد	1	1	0
البلغون	$1 \times \frac{p_k^2}{W}$	$1 \times \frac{2p_nq_n}{m}$	o

$$\mathbf{p}_{n+1} = \frac{p_n^2 + p_n q_n}{W} = \frac{p_n^2 + p_n q_n}{p_n^2 + 2p_n q_n} = \frac{p_n + q_n}{p_n + 2q_n} = \frac{1}{1 + q_n} = 0.715$$

$$\mathbf{q}_{n+1} = \frac{p_n q_n}{p_n^2 + 2p_n q_n} = \frac{q_n}{p_n + 2q_n} = \underbrace{\frac{q_n}{1 + q_n}}_{0.285}$$

a a

Aa

AA

0+1 لجيل

$$2p_{n+1}q_{n+1}$$

Pn+12

ليضات

1

1

V

$$\frac{2p_{n+1}q_{n+1}}{W}$$

 $\frac{p_{n+1}^2}{W}$

البالغون

$$p_{n+2} = \frac{1}{1+q_{n+1}} = \frac{1}{1+\frac{q_n}{1+q_n}} = \frac{1}{\frac{1+q_n+q_n}{1+q_n}} = \frac{1+q_n}{1+2q_n} = 0,779$$

$$q_{n+2} = \frac{q_{n+1}}{1+q_{n+1}} = \frac{\frac{q_n}{1+q_n}}{1+\frac{q_n}{1+q_n}} = \frac{\frac{q_n}{1+q_n}}{\frac{1+q_n+q_n}{1+q_n}} = \frac{q_n}{1+2q_n} = 0.221$$

تحديد النسبة المانوية للأتماط الورائية المعينة في هذين الجيلين

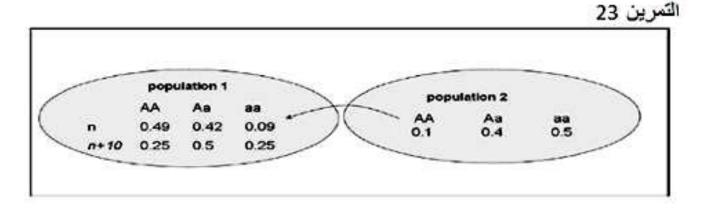
عدد الأجيال للحصول على 1% من أقراد متشابهي الاقتران بالنسبة لهذا الطيل

$$p_{x-n} = 0.9$$
 $q_{x-n} = 0.1$

1% تسبة الأقراد المتشابهي الاقتران

$$\mathbf{q}_{n+1} = \frac{q_n}{1 + q_n}$$

$$q_{n+2} = \frac{q_n}{1+2q_n}$$


$$q_{n+x} = \frac{q_n}{1 + xq_n}$$

$$\frac{1}{q_{n+x}} = \frac{1 + xq_n}{q_n} = \frac{1}{q_n} + x$$

$$x = \frac{1}{q_{n+x}} = \frac{1}{q_n}$$

$$q_n = 0.4$$
1% aa $\rightarrow q_{n+x}=0.1$

$$x = \frac{1}{0.1} - \frac{1}{0.4} = 7.5$$

p₂ : تردد A في الساكنة 2

$$p_{2n} = p_{2n+10}$$

= 0.1 + $\frac{1}{2}$ 0.4
= 0.3

P1: تردد A في الساكنة 1

$$p_{1 n} = 0.49 + \frac{1}{2} \cdot 0.42 = 0.7$$

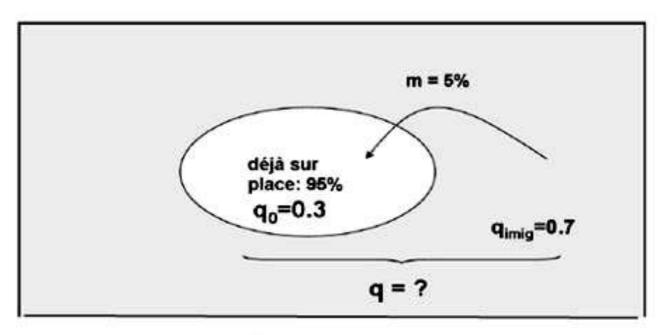
 $p_{1 n+10} = 0.25 + \frac{1}{2} \cdot 0.5 = 0.5$
 m this can be a set of m

$$E_{n+x} = E_n (1-m)^x$$

$$E_{n+10} = E_n (1-m)^x$$

$$(0.5-0.3) = (0.7-0.3) (1-m)^x$$

$$0.2 = 0.4 (1-m)^x$$


$$(1-m)^x = 0.2 / 0.4 = \frac{1}{2}$$

$$x \log (1-m) = \log 0.5$$

$$\log (1-m) = \log 0.5 / x = -0.03$$

$$e^{\log (1-m)} = e^{-0.03}$$

$$1-m = 0.97 \implies m = 0.066 \implies 6\%$$

$$\mathbf{q} = \mathbf{m} \ \mathbf{q}_{\text{imig}} + (1-\mathbf{m}) \ \mathbf{q}_{\text{o}}$$
$$= (0.05 \times 0.7) + (1-0.05) \times 0.3$$
$$= 0.32$$

si
$$q_{imig} = 0.4$$

 $0.32 = m q_{imig} + (1-m) q_o$
 $= 0.4m + (1-m) 0.3$
 $= 0.4m + 0.3 - 0.3m$
 $= 0.1m + 0.3$

0.1m = 0.32 - 0.3 = 0.02

التمرين 25 : انظر المعطيات العلمية