
تحميل هذا الملف من موقع Talamidi.com

السنة الدراسية المستوى: 2^{émé} BAC

سلسلة تمارين الذبذبات القسرية في دارة RLC

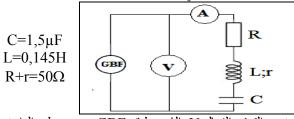
1- الذبذبات القسرية

TB 0.5 ms

- i(t) من معاينة شدة التيار Y_2 من معاينة شدة التيار Y_2
 - ين $\mathrm{U_m}$ و $\mathrm{U_{Rm}}$ ،ثم استنتج $\mathrm{I_m}$ شدة التيار القصوى .
- 3- نقول إن الدارة RLC توجد في نظام جيبي و قسري ، فسر ذلك.
- σ و استنتج u(t) و i(t) و i(t) عيث σ الفرق الزمني بين i(t) و i(t) احسب قيمة σ

 $C=1.5\mu F$

ردد GBF توثر على الفرق الزمني au و au و au المردد نحقق تجريبيا أن au

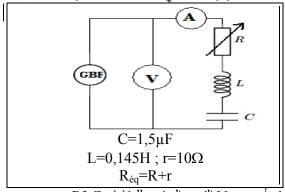

2- ممانعة الدارة RLC المتوالية

 $\overline{
m L}$ ننجز التركيب التجريبي جانبه و يتكون من مولد التر $\overline{
m c}$ د المنخفض، موصل اومي مقاومته m R و مكثف سعته m C و وشيعة معامل تحريضها

مماتعة المكثف الساتات			الوشيعة	مماتعة	تو الية RLC
I(mA)	4,02	8,05	12,07	16	الحالة الثانية
U(V)	1	2	3	4	N ₂ =500Hz
I(mA)	1,03	2,06	3,08	4,11	الحالة الاولى
U(V)	1	2	3	4	N ₁ =100Hz

CH2 (Y): 0.2 V I

CH1 (X): 0.5 V


المؤمثلة **-∕))))**)− L $\mathbf{Z}_{L} = \mathbf{L} \boldsymbol{\omega}$ تغير التوتر الفعال U الذي يطبقه GBF بين مربطي الدارة الم الله الشدة الفعالة I للتيار المار في الدارة.

- N_2 =200Hz ثم N_1 =100Hz دون النتائج في الجدول المقابل بالنسبة ل و اكتب N_1 و N_2 و اكتب U=f(I) على نفس الشكل مثل المنحنى و U=f(I)المعادلة الرياضية لكل منحنى و استنتج
- النسبة U ممانعة الدارة، و هي المعامل الموجه للمنحنى U بالنسبة Uلتردد معين ما وحدة Z؟ أحسبZ في الحالتين
- Z مع $\sqrt{R_{
 m eq}^2 + (L.2\pi N rac{1}{c.2\pi N})^2}$ مع N=N $_1$ مع $N=N_1$ مع استنتج تعبير الممانعة Z

3- ظاهرة الرنين الكهربائي

 $\overline{
m L}$ ننجز التركيب التجريبي جانبه و يتكون من مولد التردد المنخفض، موصل اومي $\overline{
m about{E}}$ م $\overline{
m B}$ و مكثف سع $\overline{
m C}$ و وشيعة معامل تحريضها نثبت ، التوتر الفعال في القيمة U=4V ، و بالنسبة لقيمة للمقاومة R نقوم بتغيير التردد N للمولد GBF فنقيس شدة التيار الفعال

$R_{\text{\'eq}}=40\Omega$	$R_{\text{\'eq}}=120\Omega$	
I(mA)	I(mA)	
12	11	
48	26	
80	28,5	
100	33	
80	28,5	
38	23	
16	14,5	
11	8,2	
	I(mA) 12 48 80 100 80 38	

- RLCالتردد الخاص للمتذبذب N_0 التردد الخاص المتذبذب
 - I=f(N) المنحنيات مناسب المنحنيات -2
- $m N_0$ عندما يتساوى m N تردد GBF (المثير) مع $m N_0$ تردد (الرنان) فنقول ان الدارة في حالة رنين.
 - $_{1}$ -3: حدد بالنسبة لكل منحنى ، $_{0}$ التردد عند الرنين ، و $_{0}$ الشدة الفعالة عند الرنين. استنتج
- 3-2: في كل حالة أحسب Z_i ممانعة الدارة عند الرنين ثم قارنها مع $R_{\text{éq};i}$. كيف تتصرف الدارة RLC عند الرنين؟
- 4- نعرف المنطقة الممررة ذات "3dB-"لدارة RLC متوالية بمجال التّرددات [N₁,N₂] للمولد حيث تكون الاستجابة I أكبر أو على الأقل تساوي
 - حيث $_{10}$ الشدة الفعالة للتيار الكهربائي عند الرنين. عين $_{10}$ و $_{10}$ ، ثم استنتج قيمة $_{10}$ عرض المنطقة $_{10}$
 - حسب قيمة المقدار $\Delta N_{
 m i}$ و قارنه مع القيمة $\Delta N_{
 m i}$ ماذا تستنتج؟