المملكة المغربية و التعليد العالي و و التعليد العالي و و التعليد العلمي المركز الوطني التعليد و الإمتحانات

الامتحات الوطنى الموحد لنيل شهادة البكالوريا الدورة الاستدراكية 2005

مسلك العلوم الرياضية أ و ب المعامل 10 مدة الإنجاز : أربع ساعات

مادة الرياضيات

استعمال الحاسبة الغير القابلة للبرمجة مسموح به

التمرين الأول: (2,5 ن)

. y هو القاسم المشترك الأكبر للعددين x و y

. χ هي كتابة العدد abc في نظمة العد ذات الأساس $\overline{abc}^{(\chi)}$

- . (E) : $(x+1)^2 = 9 + 5y$: المعادلة \mathbb{Z}^2 المعادلة (1)
 - (E) ليكن (x,y) حلا للمعادلة (0,50)

. $x\equiv 2$ [5] بين أن $x\equiv 1$ [5] بين أن

- . (E) المعادلة \mathbb{Z}^2 حل في حل في 0.50
- . $(\forall k \in \mathbb{Z})$; $(5k^2 + 4k 1) \land (5k + 1) = (K 3) \land 8$: بين أن $(5k^2 + 4k 1) \land (5k + 1) = (K 3) \land 8$

$$\begin{cases} \overline{121}^{(x)} = \overline{59}^{(y)} \\ x \wedge y = 8 \\ x \equiv 1[5] \end{cases}$$
 النظمة التالية : \mathbb{N}^2 على في \mathbb{N}^2 على في \mathbb{N}^2 على في \mathbb{N}^2

التمرين الثانى: (4,5 ن)

: الذي معادلته هي المستوى المنسوب إلى معلم متعامد ممنظم $(\mathcal{C}_m, ec{v})$ نعتبر المنحنى

$$\frac{x^2}{(10-m)} + \frac{y^2}{(2-m)} = 1 \quad ; \quad m \in \mathbb{R} \setminus \{2; 10\}$$

- (\mathscr{C}_m) ناقش حسب قیم m طبیعة المنحنی (I) ناقش حسب الله ناقش (I)
- (المركز و الرؤوس و البؤرتان و المقاربان إن وجدا مغروطيا ، اعط عناصره المميزة (المركز و الرؤوس و البؤرتان و المقاربان إن وجدا (\mathcal{C}_m)
 - (\mathscr{C}_1) أرسم 3 أر0.25
 - (II) نعتبر في مجموعة الأعداد العقدية ${\mathbb C}$ المعادلة ذات المجهول ${\mathbb C}$ التالية :

$$0 < \alpha < \frac{\pi}{2}$$
 : $z^2 - (6\cos\alpha)z + 1 + 8\cos^2\alpha = 0$

. (E) على \mathbb{O} المعادلة \mathbb{O} المعادلة المع

ليكن z_1 و z_2 على التوالي. $(\mathfrak{T}m(z_1)>0)$ و M_1 و M_2 النقطتان ذات اللحقين Z_1 على التوالي.

- . $M_1\epsilon\left(oldsymbol{\mathscr{C}}_1
 ight)$: نحقق أن $(\hat{\mathbf{j}})$ تحقق أن $(\hat{\mathbf{j}})$
- . $(\mathcal{O}M_1)$ و P_2 من P_2 من P_3 مين أنه توجد نقطتان P_1 و P_2 من P_3 مين أنه توجد نقطتان P_3 من P_4 من P_3 مين أنه توجد نقطتان P_4 من P_4 من P_5 من P_5 من P_5 من P_6 بين أنه توجد نقطتان P_6 من P_6 من P_6 من P_6 من P_6 بين أنه توجد نقطتان P_6 من P_6 من P_6 من P_6 بين أنه توجد نقطتان P_6 من P_6 من P_6 من P_6 من P_6 بين أنه توجد نقطتان P_6 من P_6 من P
 - . $O{M_1}^2 + O{P_1}^2 = O{M_2}^2 + O{P_2}^2$: نحقق أن \odot نحقق أن \odot نحقق أن

التمرين الثالث: (2,5 ن) ليكن n عددا صحيحا طبيعيا أكبر من أو يساوي n .

يحتوي كيس على 10 كرات بيضاء و (n-10) كرة سوداء ، نفترض أن كل الكرات غير قابلة للتمييز باللمس

نسحب كرة من الكيس و نسجل لونها ثم نعيدها إلى الكيس . نكرر هذه التجربة n مرة .نسمي p_k احتمال الحصول على k كرة بيضاء k كرة بيضاء . k كرة بيضاء ($0 \le k \le n$)

- p_k بدلالة n و n أحسب p_k بدلالة n
- . $k \in \{0,1,\ldots,(n-1)\}$: خيث $u_k = \frac{p_{k+1}}{p_k}$: نضع 2

$$u_k = \frac{(n-k)}{(k+1)} \times \frac{10}{(n-10)}$$
 : بين أن () 0,50

 $\boxed{10 \leq k \leq n-1 \iff u_k \leq 1}$ و $0 \leq k \leq 9 \iff u_k \geq 1$ و 0.50

. $\{0,1,\dots,n\}$ في k استنتج أكبر قيمة M للعدد p_k عندما يتغير k في m استنتج أكبر قيمة m

$$M = \frac{n!}{n^n} imes \frac{10^{10}}{10!} imes \frac{(n-10)^{n-10}}{(n-10)!}$$
 و بين أن :

التمرين الرابع: (10,5 ن)

 $f(x)=(1+x)e^{-2x}$: لتكن f الدالة العددية المعرفة على $\mathbb R$ بما يلي

 $(\mathcal{C},\vec{\imath},\vec{\jmath})$ منحناها فی معلم متعامد ممنظم منحناها فی

$$\lim_{x \to -\infty} f(x)$$
 و $\lim_{x \to +\infty} f(x)$ ا أحسب (i) أحسب (j) أحسب

- <u>0,50 ن</u> أدرس الفروع اللانهائية للمنحنى (ك).
 - \mathbb{R} ادرس تغیرات الداله f على . \mathbb{R}
 - <u>0,50 ن (3)</u> أدرس تقعر المنحنى (6).
 - . (**%**) أنشىء (**%**) .
- . $(E): y'' + 3y' + 2y = -e^{-2x}$ بين أن f حل للمعادلة التفاضلية f نين أن f بين أن f بين أن f بين أن f
 - (E) حدد الحل العام للمعادلة (() حدد الحل العام للمعادلة (

- ليكن $n \in \mathbb{N}^*$ نرمز ب A_n لمساحة الحيز المحصور بين (\mathcal{C}) و محور الأفاصيل و محور الأراتيب و المستقيم ذي المعادلة x=n .
 - . n بدلالة A_n أحسب أ1,00
 - $\lim_{n \to +\infty} A_n$: أحسب 2
 - $u_n = \int_0^n [f(x)]^n dx$: الكل عدد صحيح طبيعي غير منعدم نضع (III)
- $(\forall n \in \mathbb{N}^*)$; $u_n = \int_0^n \left(1 + \frac{t}{n}\right)^n e^{-2t} dt$: بين أن (xn = t) بين المتغير المتغير المتغير (xn = t) بين أن
 - $(\forall r \in [1;2]) \; ; \; 2-r \le \frac{1}{r} \le 1 \quad : ن (0.50)$ بين أن
 - $(\forall n \in \mathbb{N}^*)$, $(\forall x \in [0; n])$; $x \frac{x^2}{2n} \le n \ln \left(1 + \frac{x}{n}\right) \le x$: استنتج \bigcirc 0.75
 - $(\forall n \in \mathbb{N}^*)$; $u_n \leq \int_0^n e^{-x} dx$: بين أن (3) بين أن
 - $(\forall n \in \mathbb{N}^*)$; $e^{\frac{-1}{2\sqrt{n}}} \int_0^{\sqrt{n}} e^{-x} \, dx \le u_n$: بين أن $\underbrace{}$ بين أن $\underbrace{}$ بين أن
 - استنتج أن المتتالية $(u_n)_{n\geq 1}$ متقاربة و حدد نهايتها و \mathfrak{C}
 - .]0,1[ليكن a عنصرا من المجال 4
 - $\int_{a}^{1} n [f(x)]^{n} dx \le n(1-a)[f(a)]^{n} \quad : ن (i) \quad \frac{0,50}{2}$
 - $\lim_{n\to+\infty} \int_a^1 n [f(x)]^n dx = 0 \quad : ن$ استنتج أن : 0.50
 - $\lim_{n\to+\infty} \int_0^n n [f(x)]^n dx \qquad : \quad \text{i.e.} \qquad 0.50$