المملكة المغربية و التربية الوطنية و التعليد العالي و مكون الأطر والبحث العلمي

الامتحات الوطنى الموحد لنيل شهادة البكالوريا الدورة الاستدر اكية 2004

المعامل <u>10</u> ملة الإنجاز: أربع ساعات

الصفحة : 34

مادة الرياضيات

مسلك العلوم الرياضية أ و ب

استعمال الحاسبة الغير القابلة للبرمجة مسموح به

التمرين الأول: (2,5 ن)

يحتوي كيس على 10 كرات بيضاء و 10 كرات حمراء لا يمكن التمييز بينها باللمس، نسحب عشوائيا كرة من الكيس و إذا كانت الكرة المسحوبة حمراء نعيدها إلى الكيس و إذا كانت بيضاء نضع بدلها 3 كرات حمراء في الكيس ثم نسحب كرة من الكيس.

- 0,50 ن أحسب الإحتمال لكي تكون الكرتان المسحوبتان حمر اوين.
- 0,50 ن أحسب الإحتمال لكي تكون الكرتان المسحوبتان بيضاوين.
- 0,75 ن أحسب الإحتمال لكي تكون الكرتان المسحوبتان من لونين مختلفين.
- 0.75 ن (4) أحسب الإحتمال لكي تكون الكرة الأولى المسحوبة بيضاء علما أن الكرة الثانية المسحوبة بيضاء.

التمرين الثاني: (3,0 ن)

- $\mathbb{Z} imes \mathbb{Z}$ على في $\mathbb{Z} imes \mathbb{Z}$ المعادلة $\mathbb{Q} imes \mathbb{Z}$ على في $\mathbb{Q} imes \mathbb{Z}$ المعادلة المعا
 - $n \in \mathbb{N}$ ليكن $\widehat{2}$
- . (E) على المعادلة (14n+3 , 21n+4) على المعادلة (0.25
- و (n+4) أوليان فيما بينهما . (n+4) و (n+4) أوليان فيما بينهما .
- . (21n+4) و (2n+1) و (2n+1) و (3)
 - . d = 13 أو d = 1 بين أن d = 1
 - $d=13 \iff n \equiv 6[13]$: بين أن Θ بين أن Θ
 - : نضع من أجل كل عدد صحيح طبيعي n بحيث $n \geq 2$

$$B = 28n^3 - 8n^2 - 17n - 3$$
 $A = 21n^2 - 17n - 4$

- بين أن العددين A و B قابلين للقسمة على (n-1) في المجموعة $\mathbb Z$.
 - A و B و A د B و A القاسم المشترك الأكبر لـ A و A

التمرين الثالث: (4,0 ن)

 $(\mathcal{O}, \vec{u}, \vec{v})$ المستوى العقدي منسوب إلى معلم متعامد ممنظم

- . $a = \alpha + i\beta$: ليكن $a = \alpha + i\beta$ عددا عقديا غير منعدم مكتوب في شكله الجبري التالي $z^2 (\bar{z})^2 = a^2 (\bar{a})^2$. $z^2 = a^2 (\bar{a})^2$ يحقق z لتكن $z^2 (\bar{z})^2 = a^2 (\bar{a})^2$
 - (\mathcal{H}) حدد طبیعة (\mathcal{H}) عدد طبیعة (
 - . a=1+i في الحالة : (\mathcal{H}) في الحالة Θ
- . $(z-a)(ar z-ar a)=4a\overline a$ لتكن $(\mathscr C)$ مجموعة النقط M التي لحقها $(\mathscr C)$ لتكن $(\mathscr C)$
 - <u>0,75 ن</u> حدد طبیعة (%) .
 - . a=1+i في الحالة : Θ أنشىء Θ أنشىء (
 - S: $\begin{cases} z^2 (\bar{z})^2 = a^2 (\bar{a})^2 \\ (z a)(\bar{z} \bar{a}) = 4a\bar{a} \end{cases}$: النظمة التالية : 3
 - . u=z-a : نضع
- $(\mathcal{S}'): \left\{ egin{align*} u\overline{u} = 4a\overline{a} \ (u+2a)(u^3-8a(\overline{a})^2) = 0 \end{array}
 ight.$: كافىء النظمة (\mathcal{S}) تكافىء النظمة : (\mathcal{S}) :
 - $-\pi \leq \theta \leq \pi$ و r>0 و $\pi=re^{i\theta}$ نضع $\pi=re^{i\theta}$ نضع $\pi=re^{i\theta}$ و $\pi=re^{i\theta}$. ($\pi=re^{i\theta}$ و $\pi=re^{i\theta}$ و $\pi=re^{i\theta}$. ($\pi=re^{i\theta}$ و $\pi=re^{i\theta}$. ($\pi=re^{i\theta}$)
- استنتج أن تقاطع ($m{\mathscr{E}}$) و (\mathcal{H}) يتضمن ثلاث نقط و هي رؤوس لمثلث متساوي الأضلاع .

التمرين الرابع: (10,5 ن)

$$g(x) = \frac{\ln(2x)}{x}$$
 و $f(x) = 4xe^{-x\ln 2} - 2$: يتكن $f(x) = 4xe^{-x\ln 2}$ و $g(x) = \frac{\ln(2x)}{x}$

و ليكن (\mathcal{C}) و المنحنيين الممثلين للدالتين f و g على التوالي في معلم متعامد ممنظم و ليكن (\mathcal{C})

- و (∞ +) .
- دد الفرعين اللانهائيين للمنحنى ($m{\mathscr{C}}$) .
- . $(\forall x \in \mathbb{R})$; $f^{'}(x) = 4(1-x \ln 2)e^{-x \ln 2}$: ن (\hat{j}) يين أن (\hat{j}) يين أن (\hat{j})
 - اعط جدول تغیرات الداله f .

f(x)=0 بين أن العددين 1 و 2 هما الحلين الوحيدين للمعادلة

- الفروع اللانهائية النهايات التغيرات. (3) أدرس الدالة g : الفروع اللانهائية النهايات التغيرات.
- $\|\vec{i}\| = \|\vec{j}\| = 4cm$. ارسم (\mathcal{C}) و (\mathcal{T}) في نفس المعلم $\mathbf{4}$

Tolomidi com pion to dell'im lessi ei

$$0 < k < \frac{2}{e}$$
 : ليكن k عددا حقيقيا بحيث (II)

$$\frac{1}{2} < \alpha < \beta$$
 : قبل حلين مختلفين لـ α و α بحيث $g(x) = k$ تقبل علين مختلفين لـ α و α بحيث α تقبل علين مختلفين المعادلة

$$f(x)=0$$
 عدد قيمة k بحيث يكون $lpha$ و eta هما حلا المعادلة eta

$$f_k(x) = 4xe^{-kx} - 2$$
: يعتبر الدالة العددية f_k المعرفة على $\mathbb R$ بما يلي

.
$$(\forall x \in \mathbb{R})$$
 ; $f'_k(x) = 4(1-kx)e^{-kx}$: نأكد من أن (\hat{j}) تأكد من أن (\hat{j})

$$f_k$$
 إعط جدول تغيرات Θ إعط جدول تغيرات

$$a<rac{1}{k}< b$$
 : بحيث a و a . بحيث $f_k(x)=0$ تقبل بالضبط حلين مختلفين a و a . بحيث a استنتج أن المعادلة a

$$b=eta$$
 و $a=lpha$ بين أن $lpha=0.75$

$$(\forall t \in \mathbb{R}) \; ; \; \int_{0}^{t} x e^{-kx} \; dx = \frac{1}{k^{2}} (1 - kte^{-kt} - e^{-kt}) \; : ناملة بالأجزاء بين أن : 0.75 كالملة بالأجزاء بين أن المحاملة بالمحاملة بالم$$

.
$$eta$$
 و $lpha$ بدلالة $I_k=\int_{lpha}^{eta}f_k(x)dx$: التكامل التكامل $I_k=\int_{lpha}^{eta}f_k(x)dx$

$$\ln(2\alpha) \cdot \ln(2\beta) \le 1$$
 : نقج أن $0,50$