الثانية بكالوريا علوم رياضية دراسة الدواا

الأستاذ : الحيان

دراسة الدوال اللوغاريتيميــة والدوال الأسيــة

التمرين الأول:

 $\stackrel{\cdot}{h}$ لتكن f الدالة العددية المعرفة على المجال $0,+\infty$ بما يلي :

$$\begin{cases} f(x) = \frac{x+1}{x-1} & \frac{\ln(x)}{2} \\ f(1) = 1 \end{cases} ; \quad x \neq 1$$

وليكن (\mathscr{C}_f) المنحنى الممثل للدالة f في المستوى المنسوب إلى معلم متعامد ممنظم $O, \overrightarrow{i}, \overrightarrow{j}$).

- .] $0,+\infty$ المجال على المجال f دالة متصلة على المجال
- 2. أحسب $(x)^{1}$ لكل [0,1] لكل [0,1] لكل [0,1] . ثـم أدرس رتابتها على كل من هذين المجالين.
 - : لدينا ، $x\in \left]0,1\right[\cup\left]1,+\infty\right[$. لدينا . 3

$$f'(x) = \frac{(x-1)-\ln(x)}{(x-1)^2} - \frac{1}{2x}$$

: لدينا ، $x\in \left]0,+\infty\right[$ د أ- بين أن لكل

$$x - \frac{x^2}{2} < \ln(1+x) < x - \frac{x^2}{2} + \frac{x^3}{3}$$

f'(1)ب- استنتج أن f قابلة للاشتقاق في 1 وحدد

 $[0,+\infty]$ متصلة على المجال متصلة f' متصلة ج-

5. أ- بين أن :

 $\forall x \in]0,1[\cup]1,+\infty[:\ln(x)<(x-1)]$

. $\forall x \in]1,+\infty[$: f(x) < x : ن- استنتج أن

 $.(\mathscr{C}_{f})$.6 أنشئ

التمرين الثانيي:

نعتبر الدالة العددية f المعرفة كما يلى :

$$f(x) = \lim_{n \to +\infty} \frac{1}{n} \sum_{k=0}^{n-1} e^{\frac{kx}{n}}$$

- .f(0) .1
- . $\forall x \in \mathbb{R}^* : f(x) = \frac{e^x 1}{x}$: بین آن. 2
 - 3. هل الدالة متصلة في 0 ؟
- $g(x) = \lim_{n \to +\infty} \frac{1}{n^2} \sum_{k=0}^{n-1} k e^{\frac{kx}{n}}$: نضع نضع ، $x \in \mathbb{R}$ ککل

$g\left(0\right)$ أحسب

5. لتكن h الدالة العددية المعرفة كما يلي :

$$\forall t \in [0,+\infty[: h(t) = e^{\sqrt{t}} - \sqrt{t}]$$

أ- ليكن $0,+\infty$. باستعمال مبر هنة التزايدات المنتهية،

بين انه يوجد عدد حقيقي c من المجال $0,x^2$ بحيث :

$$\frac{e^x - 1 - x}{x^2} = \frac{1}{2} \left(\frac{e^{\sqrt{c}} - 1}{\sqrt{c}} \right)$$

ب- استنتج أن الدالمة $\,f\,$ قابلة للاشتقاق على يمين $\,0\,$ وأحسب $\,f_{\,d}^{\,\,\prime}\left(0
ight)$

التمرين الثالـــث:

الجزء الأول:

: بما يلي بما يلي به المعرفة على \mathbb{R} بما يلي . $u\left(x\right) = \left(2-x\right)e^{x} - 2$

u أدرس تغيرات الدالة u

 \mathbb{R} . استنتج إشارة $u\left(x
ight)$ على \mathbb{R}

الدالة العددية المعرفة على $\mathbb R$ بما يلي :

$$\begin{cases} f(x) = \frac{x^2}{e^x - 1} & ; \quad x \neq 0 \\ f(0) = 0 & \end{cases}$$

وليكن (\mathscr{C}_f) المنحنى الممثل للدالة f في المستوى المنسوب إلى معلم متعامد ممنظم $(O,\overrightarrow{i},\overrightarrow{j})$.

- \mathbb{R} بين أن الدالة f متصلة على .1
- 2. أحسب $\lim_{x\to +\infty} f\left(x\right)$ و $\lim_{x\to +\infty} f\left(x\right)$ ، ثم حدد الفر عين اللانهائيين للمنحنى (\mathscr{C}_f) .
- 3. أدرس قابلية اشتقاق الدالة f في f وأعط تأويلا هندسيا للنتيجة المحصلة.
 - بین أن الدالة f قابلة للاشتقاق على \mathbb{R} ، و بین أن : \mathbf{r} . \mathbf{u} (\mathbf{r})

$$\forall x \in \mathbb{R}^* : f'(x) = \frac{x u(x)}{(e^x - 1)^2}$$

f ضع جدول تغيرات الدالة f

 $(\alpha \approx 1.6:$ فنشئ (\mathscr{C}_{f}) . (نعطي) . (

الجزء الثاني :

: يني \mathbb{R}^+ الدالة العددية المعرفة على F بما يلي

$$\forall x \in \mathbb{R}^+ : F(x) = \int_0^x f(t) dt$$

 \mathbb{R}^+ 1. بين أن F متصلة وتزايدية قطعا على F

$$G(x) = \int_{\ln 2}^{x} t^2 e^{-t} dt$$
: نضع ، $x \in \mathbb{R}^+$ ککل .2

. $\lim_{x \to +\infty} G\left(x\right)$ ثم نثم نثم الأجزاء، أحسب أ- باستعمال مكاملة بالأجزاء، أحسب

.
$$\forall t \in \lceil \ln 2, +\infty \rceil$$
 : $f(t) \leq 2 t^2 e^{-t}$: بين أن

 $\lim_{x o +\infty} F\left(x\right) \!=\! L$ نقبل أن \mathbb{R}^+ مكبورة على F مكبورة وأن $L \in \mathbb{R}$

الجزء الثالث:

 $n\in\mathbb{N}^*$ ليكن

ا. 1. بین أن لكل x>0 لدینا :

$$\frac{1}{e^x - 1} = e^{-x} + e^{-2x} + \dots + e^{-nx} + \frac{e^{-nx}}{e^x - 1}$$

.
$$\forall x > 0 : 0 \le \int_0^x f(t)dt \le \frac{\alpha(2-\alpha)}{n}$$
 : بين أن . 2

$$x \in [0,+\infty[$$
 لكل $I_n(x) = \int_0^x t^2 e^{-nt} dt$: احسب.

.
$$\lim_{x\to+\infty}I_n(x)=\frac{2}{n^3}$$
 : ناستنتج أن

اا. 1. بین أن لکل
$$x \in [0,+\infty]$$
 ، لدینا :

$$F(x) = \sum_{k=1}^{k=n} I_k(x) + \int_0^x f(t)e^{-nt}dt$$

. ينكن \mathbb{R}^+ بما يلي . 2

$$h_n(x) = \int_0^x f(t)e^{-nt}dt$$

$$L - I_n = 2 \left(1 + \frac{1}{2^3} + \frac{1}{3^3} + \frac{1}{4^3} + \dots + \frac{1}{n^3} \right)$$
 : وأن

.
$$\lim_{n\to+\infty}I_n=0$$
 : مين أن $(I_n)_{n\in\mathbb{N}^*}$ متتالية متقاربة وأن

. نعتبر المتتالية العددية
$$\left(v_{n}\right)_{n\in\mathbb{N}^{*}}$$
 المعرفة بما يلي .

$$v_n = 1 + \frac{1}{2^3} + \frac{1}{3^3} + \frac{1}{4^3} + \dots + \frac{1}{n^3}$$

: بين ان L' تحقق ما يلي متقاربة وأن نهايتها $(v_n)_{n\in\mathbb{N}^*}$ تحقق ما يلي

L = 2L'

لتمرين الرابيع

لكل
$$n \in \mathbb{N}$$
 ، نعتبر الدالة العددية م المعرفة على المجال

$$f_n(x) = n \ x + \ln(x)$$
: بما يلي $]0,+\infty[$

،
$$\mathbb{R}$$
 . بين أن المعادلة $f_{n}\left(x\right)=0$ تقبل حلا وحيدا . 1

$$x_n \in \left]0,1\right]$$
 وأن

.
$$\forall x \in]0,+\infty[$$
 : $f_{n+1}(x)>f_n(x)$: 2.

ب- استنتج أن :
$$0 < f_{n+1}(x_n) > 0$$
 ، وأن $f_{n+1}(x_n) > 0$ متتالية تناقصية.

.3 أ- بين أن
$$(x_n)_{n\in\mathbb{N}}$$
 متتالية متقاربة.

$$\lim_{n\to+\infty} x_n = l$$
: نضع

$$.\,l \not\in \left]0,1
ight]$$
 : بين أن

$$.\,l=0$$
 : أن $.$

$$x_n > \frac{1}{n}$$
: فإن $n \ge 3 > e$ كان 4.

$$x_n < \frac{1}{\sqrt{n}}$$
: واستنتج أن $x - \ln(x)$ ب- أدرس إشارة

جـ- ماذا تستنتج ؟

<u>التمرين الخامــــس:</u>

$$u_0=\int_0^1 rac{1}{2+t}dt$$
 نضع : نضع $n\in\mathbb{N}$ نبكن $u_n=\int_0^1 rac{1}{1+t+t^n}dt$ و

.
$$u_1$$
 و u_0 . 1

ين أن
$$\left(u_{n}
ight)_{n\in\mathbb{N}}$$
 متثالية تزايدية .

.
$$\forall n \in \mathbb{N} : u_n \leq \int_0^1 \frac{1}{1+t} dt$$
 : 3.3

ب- أحسب
$$\int_0^1 \frac{1}{1+t} dt$$
 ماذا تستنتج ؟

$$\forall n \in \mathbb{N} : \ln 2 - u_n = \int_0^1 \frac{t^n}{(1+t)(1+t+t^n)} dt$$

.
$$\forall n \in \mathbb{N} : \ln(2) - u_n \leq \frac{1}{1+n}$$
: ب- استنتج أن

$$\lim_{n\to+\infty}u_n$$
: جـ- أحسب