Suite numériques

- a) montrer que $(\mathcal{V}_n)_n$ est géométrique
- b) calculer $\lim_{n\to+\infty} \mathcal{U}_n$

Exercice 4

Soit n un entier tel que $n \ge 2$ on considère la fonction f_n définie par : $f_n(x) = x - \cos\left(\frac{x}{n}\right)$

- 1) montrer que f_n est bijective de $\mathbb R$ vers $\mathbb R$
- 2) en déduire que $f_n(x) = 0$ admet une seule solution a_n et que $0 < a_n < 1$
 - 3) montrer que

$$\left(\forall x \in \left[0,1\right]\right) \quad f_{n+1}\left(x\right) \le f_{n}\left(x\right)$$

Puis étudier la monotonie de $(a_n)_n$

4) déduire que $(a_n)_n$ est convergente et $\lim_{n\to+\infty} a_n$

Exercice 5

Soit \mathscr{D} un réel de \mathbb{R}^{*+} , \mathscr{A} tel que $\mathscr{A} > \sqrt[3]{\mathscr{D}}$. On considère la suite $(\mathscr{U}_n)_n$ telle que :

$$\mathcal{U}_{o} = \mathcal{A}$$
 o $\mathcal{U}_{n+1} = \frac{1}{3} \left(2\mathcal{U}_{n} + \frac{\sqrt[3]{6^2}}{\mathcal{U}_{n}} \right)$

- 1) a) montrer que $(\forall n \in \mathbb{N})$ $\mathcal{U}_n > o$
- b) montrer que

$$\mathcal{U}_{n+1} - \sqrt[3]{\mathscr{D}} = \frac{2\mathcal{U}_n - \sqrt[3]{\mathscr{D}}}{3\mathcal{U}_n} \Big(\mathcal{U}_n - \sqrt[3]{\mathscr{D}} \Big)$$

- c) en déduire que $(\forall n \in \mathbb{N})$ $\mathcal{U}_n > \sqrt[3]{\mathcal{B}}$ puis $(\mathcal{U}_n)_n$ est convergente
- 2) a) montrer que:

$$(\forall n \in \mathbb{N}) \quad \mathcal{U}_{n+1} - \sqrt[3]{b} \leq \frac{2}{3} (\mathcal{U}_n - \sqrt[3]{b})$$

b) déterminer $\lim_{n\to +\infty} \mathcal{U}_n$

Exercice 6

- 1) a) montrer que $\left(\exists!\alpha\in\left]\frac{\pi}{2},\frac{3\pi}{2}\right[\right)$ $\tan\alpha=\frac{1}{\alpha}$
 - b) montrer que $\alpha = \pi + \arctan \frac{1}{\alpha}$
- 2) a) montrer que :

$$(\forall n \in \mathbb{N}^*) \left(\exists ! \beta_n \in \left[\frac{\pi}{2}, \frac{3\pi}{2} \right] \right) \tan \beta_n = n + \frac{1}{\beta_n}$$

- b) montrer que $(\forall n \in \mathbb{N}^*)$ $\alpha < \beta_n$
- c) étudier la monotonie de $(\beta_n)_n$ et $\lim_{n\to +\infty} \beta_n$

Exercice 1

Soit a un réel de]0,1[on considère la suite

$$(U_n)_{n\geq 1}$$
 définie par : $U_n = \prod_{k=0}^{k=n} (1+a^{2^k})$

- 1) montrer que $(U_n)_{n\geq 1}$ est croissante
- 2) montrer que $(\forall n \in \mathbb{N}^*)$ $U_n = \frac{1 a^{2^{n+1}}}{1 a^2}$
- 3) en déduire que $\left(U_{\scriptscriptstyle n}\right)_{\scriptscriptstyle n\geq 1}$ est convergente

Exercice 2

Soit (U_n) la suite définie par :

$$U_{_{0}}=rac{1}{2}$$
 و $U_{_{n+1}}=rac{2U_{_{n}}}{1+U_{_{n}}^{^{2}}}$

- 1) a) montrer que $(\forall n \in \mathbb{N})$ $\frac{1}{2} \leq U_n \leq 1$
- b) montrer que $(U_n)_n$ est convergente
 - a) Montrer que:

$$\left(\forall n \in \mathbb{N}\right) \quad 0 \le 1 - U_{n+1} \le \frac{2}{5} \left(1 - U_{n}\right)$$

b) montrer que:

$$(\forall n \in \mathbb{N}) \quad 0 \le 1 - U_n \le \frac{1}{2} \times \left(\frac{2}{5}\right)^n$$

Déterminer $\lim_{n\to+\infty} U_n$

2) on pose $V_n = \frac{1}{n} \sum_{k=1}^{k=n} U_k$ pour tout $n \text{ de } \mathbb{N}^*$

$$\text{Montrer que} \quad n - \frac{1}{3} \left(1 - \left(\frac{2}{5} \right)^n \right) \le \sum_{k=1}^{k=n} U_k \le n$$

Calculer $\lim_{n\to+\infty} S_n$

Exercice 3

 $\left(\mathcal{U}_n\right)_n$ une suite telle que :

$$U_o = \sqrt[3]{\frac{2}{7}}$$
 et $U_{n+1} = \sqrt[3]{\frac{1 + U_n^3}{8}}$

- 1) a) montrer que $(\forall n \in \mathbb{N})$ $\mathcal{U}_n > \sqrt[3]{\frac{1}{7}}$
- b) montrer que $(\forall n \in \mathbb{N})$ $\frac{\mathcal{U}_{n+1}}{\mathcal{U}_n} < 1$ puis déduire la monotonie de $(\mathcal{U}_n)_n$
- 2) on pose $V_n = \frac{7}{8} U_n^3 \frac{1}{8}$

Suites numériques

Exercice 10

fdéfinie sur]0,+∞[par : $f\left(x\right)=1+\frac{1}{\sqrt{x}}$

- 1) Montrer que f(x) = x a une seule solution α et $1 < \alpha < 2$
- 2) Montrer que $(\forall x \in [1,2])$ $|f'(x)| \le \frac{1}{2}$
- 3) Soit la suite $\left(U_n\right)_n$ définie par : $U_0=2 \ \ \textbf{\textit{u}}_{n+1}=f\left(U_n\right)$
- a) Montrer que $(\forall n \in \mathbb{N})$ $1 \le U_n \le 2$
- b) Montrer que $(\forall n \in \mathbb{N})$ $|U_n \alpha| \le \left(\frac{1}{2}\right)^n$
- c) Déduire que $\left(U_{n}\right)_{n}$ est convergente et calculer sa limite
- 4) On pose $T_n = \left(-1\right)^n \left(U_n \alpha\right)$ of $S_n = \sum_{k=0}^{k=n} T_k$
- a) Montrer que $\left(\forall n \in \mathbb{N}\right)$ $U_{2n+1} \leq \alpha \leq U_{2n}$ en déduire que $\left(\forall n \in \mathbb{N}\right)$ $T_n \geq 0$
- b) Etudier la monotonie de $\left(S_{n}\right)_{n}$ et montrer qu'elle est majorée

Exercice 11

On considère la suite $(\mathcal{U}_n)_n$ définie par : $\mathcal{U}_1 = 1$

$$\mathcal{U}_{n+1} = \sqrt{\mathcal{U}_n^2 + \frac{1}{\left(n+1\right)^2}}$$

- 1) montrer que $(\forall n \in \mathbb{N})$ $\mathcal{U}_n > o$ En déduire que $(\mathcal{U}_n)_n$ est croissante
- 2) on pose $V_n = \sum_{k=1}^{k=n} \frac{1}{k^2}$
- a) montrer que $(\forall n \in \mathbb{N})$ $\mathcal{V}_n \leq 2 \frac{1}{n}$
- b) montrer que $(\forall n \in \mathbb{N})$ $\mathcal{U}_n = \sqrt{1 + \mathcal{V}_n}$
- c) déduire $(\forall n \in \mathbb{N})$ $\mathcal{U}_n < \sqrt{3}$ puis que $(\mathcal{U}_n)_n$ est convergente . on pose $\ell = \lim_{n \to +\infty} \mathcal{U}_n$
- 3) a) montrer que $(\forall k > 3)$ $2^{k} \ge k^{2}$
- b) montrer que $\left(\forall \mathcal{R} > 2\right)$ $\mathcal{U}_{\ell+1}^2 \mathcal{U}_{\ell}^2 \ge \frac{1}{2^{\ell+1}}$ en déduire que $\sqrt{\frac{179}{72}} \le \ell \le \sqrt{3}$

Exercice 7

Soit n un entier de $\mathbb N$ on considère f définie

sur
$$\left] -\frac{\pi}{2}, \frac{\pi}{2} \right[par : f(x) = tan x - x$$

- 1) étudier le sens de variation de f
- 2) montrer que f(x) = n a une solution α_n
- 3) a) montrer que $(\alpha_n)_n$ est convergente
- b) déterminer la limite de $(\alpha_n)_n$

Exercice 8

f définie sur $\left[0, \frac{\pi}{2}\right]$ Par : $f(x) = \sqrt{\frac{2}{1 + \sin x}}$

- 1) a) étudier les variations de f
- b) déduire que f(x) = x a une unique solution

 α dans $\left[0,\frac{\pi}{2}\right]$

- 2) montrer que $\left(\forall x \in \left[0, \frac{\pi}{2} \right] \right) \left| f'(x) \right| \le \frac{\sqrt{2}}{2}$
- 3) $(U_n)_n$ la suite définie par : $U_0 = 0 \quad \mathbf{y} \quad U_{n+1} = f(U_n)$
- a) montrer que $(\forall n \in \mathbb{N})$ $U_n \in \left[0, \frac{\pi}{2}\right]$
- b) montrer que:

$$(\forall n \in \mathbb{N}) |U_{n+1} - \alpha| \leq \frac{\sqrt{2}}{2} |U_n - \alpha|$$

c) déduire que $\left(U_{_n}\right)_{\!_n}$ est convergente et calculer $\lim_{_{n\to+\infty}}U_{_n}$

Exercice 9

 $(\mathcal{U}_n)_n$ و $(\mathcal{V}_n)_n$ deux suites telles que :

$$U_n = \sum_{k=0}^{k=n} \frac{1}{3^k}$$
 o $V_n = \sum_{k=0}^{k=n} \frac{k}{3^k}$

- 1) déterminer la limite de $(\mathcal{U}_n)_n$
- 2) a) vérifier que :

$$(\forall n \in \mathbb{N})$$
 $3\mathcal{V}_{n+1} = \mathcal{U}_n + \mathcal{V}_n$

- b) en déduire que $(\forall n \in \mathbb{N})$ $\mathcal{V}_n \leq 3$
- c)montrer que $\left(\mathcal{V}_n
 ight)_n$ est convergente et déterminer sa limite