تم تحميل هذا الملف من موقع Talamidi.com

Exercice 1

Calculer les limites suivantes

$$\lim_{x \to +\infty} \frac{\ln\left(2+3\sqrt{x}\right)}{\ln\left(1+2x^2\right)} \qquad \text{,} \qquad \lim_{x \to +\infty} \frac{\ln x \ln\left(x+1\right)}{x} \qquad \text{,} \qquad \lim_{x \to +\infty} x \ln\left(\frac{2x+1}{2x+3}\right) \qquad \text{,} \qquad \lim_{x \to +\infty} \frac{\left(\ln x\right)^3}{x^2}$$

Exercice 2

Résoudre les équations et inéquations ci-dessous

1)
$$2\ln(x-2)-\ln(x+3)=0$$
 $(\ln x)^2-3\ln x+2=0$ $(\ln x)^3-\ln x=0$

2)
$$\ln(x^2 - x) + \ln(\frac{1}{3x + 4}) < 0$$
 $\ln x - 2 \ge \frac{4}{\ln x}$ $\ln x > -1 + \ln 2$

Exercice 3

1) montrer que $(\forall x \in]0, +\infty[) \ln(1+x) \le x \le (x+1) \ln(1+x)$

2) a) montrer que :
$$\prod_{k=1}^{k=n} \left(1 + \frac{1}{k}\right)^k \le e^n \le \prod_{k=1}^{k=n} \left(1 + \frac{1}{k}\right)^{k+1}$$

b) en déduire $\lim_{n\to+\infty}\frac{1}{n}\sqrt[n]{n!}$

Exercice 4

1) a) montrer que $(\forall \in]0, +\infty[)$ $\ln t \le t-1$

b) en déduire que $(\forall \in \mathbb{R}^{+*})$ $x \ln x \ge x - 1$

2) montrer que $(\forall x \in [1, +\infty[) x \ln x \le \frac{1}{2}(x^2 - 1))$

3) soit f la fonction définie sur $]0,+\infty[$ par : $f(x) = x \ln x$

a) étudier le sens de variation de f puis dresser le tableau de variations

b) soit n de \mathbb{N}^* montrer que l'équation $f(x) = \frac{1}{n}$ admet une seule solution a_n et $1 < a_n < e$

c) étudier la monotonie de $(a_n)_{n\geq 1}$ et déduire qu'elle est convergente

d) montrer que $(\forall n \in \mathbb{N}^*)$ $\sqrt{1+\frac{2}{n}} \le a_n \le 1+\frac{1}{n}$ puis calculer $\lim_{n \to +\infty} a_n$

Exercice 5

Soit n un entier tel que $n \ge 3$. on considère la fonction f_n définie sur $]0,+\infty[$ par : $f_n(x) = x^2 - 2n \ln x$

1) a) calculer les limites $\lim_{\substack{x\to 0 \ x\to 0}} f_n(x)$ et $\lim_{x\to +\infty} f_n(x)$

b) étudier les variations de $f_{\scriptscriptstyle n}$ et donner le tableau de variations

2) montrer que $f_{n}\left(x\right)=0$ admet deux solutions u_{n} et v_{n} telles que $u_{n}<\sqrt{n}< v_{n}$

3) calculer $\lim_{n\to +\infty} v_n$ puis montrer que $\lim_{n\to +\infty} \frac{\ln\left(v_n\right)}{\ln\left(2n\right)} = \frac{1}{2}$

4) a) montrer que $(\forall n \ge 3)$ $u_n \ge 1$

b) vérifier que $f_{n+1}(u_n) = -\ln u_n$ en déduire que $(u_n)_n$ est convergente

c) montrer que $(\forall n \ge 3)$ $u_n \le e^{\frac{3}{2n}}$ en déduire la limite de $(u_n)_n$

تم تحميل هذا الملف من موقع Talamidi.com

Exercice 6

1) montrer que
$$(\forall x \in \mathbb{R}^{+*})$$
 $\ln x \le x - 1$

2) soit
$$n$$
 de $\mathbb N$ tel que $n\geq 2$. $x_1\,;x_2\,;......;x_n$ 9 $\alpha_1\,;\alpha_2\,;......;\alpha_n$ des réels de $\mathbb R^{^{*+}}$

Tels que
$$\sum_{k=1}^{n} \alpha_k = 1$$
 on pose $y = \sum_{k=1}^{n} \alpha_k x_k$

a) Montrer que pour tout
$$k$$
 de $\{1;2;....;n\}$ on a : $\alpha_k \ln\left(\frac{x_k}{y}\right) \leq \frac{\alpha_k \, x_k}{y} - \alpha_k$

b) En déduire que :
$$\sum_{k=1}^{k=n} \alpha_k \ln (x_k) \leq \ln \left(\sum_{k=1}^{k=n} \alpha_k x_k \right)$$

c) Montrer que :
$$\frac{1}{n}\sum_{k=1}^{k=n}\ln\left(x_k\right) \le \ln\left(\frac{\sum_{k=1}^{k=n}x_k}{n}\right)$$

d) Prouver que
$$\sqrt[x]{x_1 x_2 \dots x_n} \le \frac{1}{n} \sum_{k=1}^{k=n} x_k$$

e) Montrer que
$$n! \le \left(\frac{n+1}{2}\right)^n$$

En déduire que
$$\frac{x_1}{x_2}+\frac{x_2}{x_3}+.....+\frac{x_n}{x_1}\geq n$$
 pour tous $x_1;x_2;......;x_n$ de \mathbb{R}^{*+}

1) montrer que
$$(\forall x > 0)$$
 $x - \frac{x^2}{2} \le \ln(1+x) \le x$

2) on pose
$$U_n = \sum_{k=1}^{k=n} \ln \left(1 + \frac{k}{n^2} \right)$$
 pour tout entier naturel n non nul

a) calculer
$$\ U_{_{1}}\ ;\ \ U_{_{2}}$$

b) montrer que
$$\left(U_n\right)_n$$
 est convergente (on donne $\sum_{k=1}^{k=n} k^2 = \frac{n\left(n+1\right)\left(2n+1\right)}{6}$)

3) on pose
$$V_n = \prod_{k=1}^{k=n} \left(1 + \frac{k}{n^2}\right)$$
 pour $n \text{ de } \mathbb{N}^*$.

montrer que $\left(V_{\scriptscriptstyle n}\right)_{\scriptscriptstyle n}$ est convergente et déterminer sa limite

Exercice 8

Soit x de $]0,+\infty[$ on considère la fonction φ définie par :

$$\varphi(t) = x^{2}(\ln(1+t) - t) - t^{2}(\ln(1+x) - x)$$

1) montrer que
$$\ \varphi$$
 vérifier les conditions de rool sur $[0,x]$

2) en déduire qu'il existe un réel
$$c$$
 tel que $\frac{\ln{(1+x)}-x}{x^2}=\frac{-1}{2(1+c)}$

3) déduire que
$$\lim_{\substack{x\to 0 \ x>0}} \frac{\ln(1+x)-x}{x^2} = -\frac{1}{2}$$

4) déterminer
$$\lim_{\substack{x\to 0\\x<0}} \frac{\ln(1+x)-x}{x^2}$$