تم تحميل هذا الملف من موقع Talamidi.com

التمرين الأول

On considère la fonction f définie par : $f(x) = \frac{e^x}{e^{2x} + 1}$

- 1) a) étudier la parité de f
 - b) calculer $\lim_{x\to +\infty} f(x)$, interpréter le résultat

- 2) a) montrer que $(\forall x \in \mathbb{R})$ $f'(x) = \frac{e^x (1 e^{2x})}{(e^{2x} + 1)^2}$
 - b) étudier le sens de variation de f et donner le tableau de variation
 - c) déduire que $(\forall x \in \mathbb{R})$ $0 < f(x) \le \frac{1}{2}$
- 3) construire la courbe $\left(C_{f}\right)$
- 4) montrer que l'équation f(x) = x admet dans $I = \left[0, \frac{1}{2}\right]$ une seule solution α
- 5) montrer que $(\forall x \in I) |f'(x)| \le \frac{1}{2}$
- 6) on considère la suite $\left(U_{_n}\right)_{\!_n}$ définie par : $U_{_0}=0$ et $U_{_{n+1}}=f\left(U_{_n}\right)$
- a) montrer que $(\forall n \in \mathbb{N})$ $0 \le U_n \le \frac{1}{2}$
- b) montrer que $(\forall n \in \mathbb{N}) | U_{n+1} \alpha | \leq \frac{1}{2} | U_n \alpha |$
- c) déduire que $\left(U_{n}\right)_{n}$ est convergente et déterminer sa limite

التمرين الثاني

Partie (1)

- 1) résoudre l'équation $2e^{-2x}-2e^{-x}-1=0$ et déduire le signe de $2e^{-2x}-2e^{-x}-1$
- 2) soit la fonction f définie par : $f(x) = 2e^{-x} e^{-2x} x$
 - a) calculer les limites $\lim_{x\to -\infty} f(x)$; $\lim_{x\to +\infty} f(x)$
 - b) étudier les branches infinies de la courbe (C_f)
 - 3) étudier le sens de variation de f et donner sa table de variation
- 4) montrer que l'équation f(x) = 0 admet deux solutions distinctes α , β
- 5) construire la courbe (C_f) (on donne $\alpha \simeq -0.8$ et $\beta \simeq 0.7$)

Partie (2)

Soit g la fonction définie sur $I = \left[\frac{1}{2}, 1\right]$ par : $g(x) = 2e^{-x} - e^{-2x}$

- 1) étudier le sens de variation de g , montrer que $g(I) \subset I$
- 2) montrer que $(\forall x \in I) |g'(x)| \le \frac{1}{2}$
- 3) on considère la suite $\left(U_n\right)_n$ définie par : $U_0=\frac{1}{2}$ et $U_{n+1}=g\left(U_n\right)$

تم تحميل هذا الملف من موقع Talamidi.com

- a) montrer que $(\forall n \in \mathbb{N})$ $0 \le U_n \le \frac{1}{2}$
 - دراسة دالة لوغاريتم
- b) montrer que $(\forall n \in \mathbb{N})$ $|U_{n+1} \beta| \le \frac{1}{2} |U_n \beta|$
- c) déduire que $(U_n)_n$ est convergente et déterminer sa limite

التمرين الثالث

Soit n un entier naturel. on considère la fonction f_n définie par : $f_n(x) = -1 + n(2-x)e^x$

- 1) calculer les limites $\lim_{x\to +\infty} f_n(x)$; $\lim_{x\to -\infty} f_n(x)$
- 2) calculer $f_n'(x)$ et étudier le sens de variation de f_n puis dresser le tableau de variation
- 3) montrer que l'équation (E_n) $f_n(x) = 0$ admet deux solutions $\alpha_n < 0$ et $\beta_n \in]1,2[$
- 4) a) montrer que $\left(f_{n+1}(t) = (2-t)e^t \right) \Leftrightarrow \left(t \text{ solution de } \left(E_n \right) \right)$
 - b) montrer que $f_{n+1}(\beta_n) > 0$ t déduire que $(\beta_n)_n$ est croissante
 - c) montrer que $(\beta_n)_n$ est convergente et que $\lim_{n\to +\infty} \beta_n = 2$
 - 5) a) montrer que $(\alpha_n)_n$ est décroissante
 - b) montrer que $\lim_{n\to+\infty} \alpha_n = -\infty$

التمرين الرابع

Partie (1)

- 1) on pose $g(x) = e^x + x + 1$
- a) montrer que l'équation g(x) = 0 admet une seule solution α
- b) déduire le sine de g(x)
- 2) on considère la fonction f définie sur \mathbb{R} par : $f(x) = \frac{xe^x}{e^x + 1}$
- a) étudier les branches infinies de la courbe $\left(C_{f}\right)$
- b) calculer f'(x)
- c) vérifier que $f(\alpha) = 1 + \alpha$ puis dresser le tableau de variation de f
- d) tracer la courbe $\left(C_f\right)$ dans un repère $\left(O,\vec{i},\vec{j}\right)$ avec $\left\|\vec{i}\right\| = \left\|\vec{j}\right\| = 2\,cm$ (on prend $\alpha \simeq -1,25$) partie (2)

soit un entier naturel.

- 1) a) montrer que l'équation f(x) = n admet une unique solution α_n
 - b) étudier la monotonie de la suite $(\alpha_n)_n$
 - c) monter que $(\forall n \in \mathbb{N})$ $\alpha_n \ge n$; déduire $\lim_{n \to +\infty} \alpha_n$
- 2) a) montrer que $(\forall n \in \mathbb{N}^*)$ $\alpha_n n = ne^{-\alpha_n}$ et déduire $\lim_{n \to +\infty} \alpha_n n$
 - b) montrer que $\lim_{n\to +\infty} \ln \alpha_n n = -\infty$

التمرين الخامس

On considère la fonction f définie sur \mathbb{R} par : $f(x) = e^{-x} \ln (1 + e^x)$

1) a) calculer les limites $\lim_{x \to -\infty} f(x)$; $\lim_{x \to +\infty} f(x) \lim_{x \to +\infty} f(x)$

تم تحميل هذا الملف من موقع Talamidi.com

b) étudier les branches infinies

دراسة دالة لوغاريتم

- 2) a) montrer que $(\forall t > 0)$ $\ln(1+t) > \frac{t}{1+t}$
 - b) calculer f'(x) et déduire que f est décroissante puis donner le tableau de variation
- 3) montrer que (C_f) coupe la droite (Δ) y=x en un point d'abscisse α appartenant à $]0, \ln 2[$
- 4) tracer la courbe (C_f)
- 5) on pose $I=]0,\ln 2[$. on considère la suite $(U_n)_n$ telle que $U_0=\frac{1}{2}$ et $U_{n+1}=f(U_n)$
- a) montrer que $(\forall x \in I)$ $|f'(x)| \le \frac{2}{3} (\forall x \in I)$ $|f'(x)| \le \frac{2}{3}$
- b) montrer que $(\forall n \in \mathbb{N})$ $U_n \in I$
- c) montrer que $(\forall n \in \mathbb{N})$ $|U_{n+1} \alpha| \leq \frac{2}{3} |U_n \alpha|$ déduire que $(U_n)_n$ est convergente et déterminer sa limite

التهرين السادس

Soit n un entier tel que $n \ge 2$.

on considère la fonction f_n définie sur $\left[0,+\infty\right[$ par : $f_n\left(x\right)=1-x-e^{-nx}$

- 1) montrer que $(\forall x \in]1, +\infty[)$ $\ln x < x-1$; déduire $(\forall x > 1)$ $e^{x-1} > x$
- 2) a) calculer $\lim_{n\to\infty} f_n(x)$ et étudier le sens de variation de f_n
- b) montrer que l'équation $f_n(x) = 0$ admet dans $0,+\infty$ une seule solution a_n et que $a_n < 1$
- 3) a) étudier le sens de variation de la fonction $g(x) = \frac{\ln x}{x}$
 - b) montrer que la suite $(a_n)_{n\geq 3}$ est croissante et qu'elle est convergente
- 4) montrer que $f_n \left(1 \frac{1}{n} \right) < 0$; déduire la limite de $\left(a_n \right)_n$

التمرين البيايج

Soit *n* un entier non nul. on considère la fonction f_n définie par : $f_n(x) = e^x + \frac{x}{n}$

- 1) a) calculer les limites de f_n
 - b) étudier les variations de f_n et dresser le tableau de variation
- 2) montrer que l'équation $f_n(x) = 0$ admet une seule solution a_n et que $a_n \in \left[-\infty, 0 \right[$
- 3) a) montrer que la suite $\left(a_{_{n}}\right)_{_{n\geq3}}$ est décroissante
 - b) montrer que $f_n\left(-\ln\sqrt{n}\right) > 0$ et déduire que $\lim_{n\to\infty} a_n = -\infty$
 - c) déterminer le signe de $f_n\left(-\ln(n)\right)$. déduire $\lim_{n\to+\infty}\frac{a_n}{a_n}$
 - d) vérifier que $(\forall n \in \mathbb{N}^*)$ $\frac{a_n}{\ln n} = -1 + \frac{\ln(-a_n)}{\ln n}$ puis déduire que $\lim_{n \to +\infty} \frac{a_n}{\ln n} = -1$