
تم تحميل هذا الملف من موقع Talamidi.com

الامتدان الوطني الموحد للبكالوريا

0\$3.6 \$3X0\$ | ₹9.0163.4 | 0\$3.6 \$3X0\$ | ₹9.0163.4 | 6.08%%%% \

الدورة العادية 2016 - عناصر الإجابة -

NR 25

المركز الوطني للتقويم والامتحانات والتوجيه

4	مدة الإنجاز	الرياضيات	المادة
9	المعامل	شعبة العلوم الرياضية (أ) و (ب) (الترجمة الفرنسية)	الشعبة أو المسلك

3.5 نقط	<u>التمرين الأول</u>		
0.5	تطبيق الخاصية المميزة لزمرة جزئية		-1
0.5	التحقق		-2
0.25	تعریف تشاکل	(1)	-3
0.25	الإشارة إلى أن: (\hat{t}^*, \hat{t}) زمرة تبادلية و \hat{t} تشاكل	ب)	
0.25	$j\left(\mathfrak{t}^{st} ight) =E^{st}$ الإشارة إلى أن: $\left(\mathfrak{t}^{st} ight) =E^{st}$ الإشارة إلى أن		
0.25	$\mathrm{j}\;\left(1 ight)=M\left(1,0 ight)$ و $\left(\mathrm{f.}^{*},^{'} ight)$ و 1		
0.25	رمرة تبادلية عنصرها المحايد $O=M\left(0,0 ight)$ حسب السؤال 1- $(E,+)$		-4
	و $\left(E^{*,'} ight)$ زمرة تبادلية حسب السؤال 3-ب)		
0.25	E القانون " ´ " توزيعي بالنسبة للقانون " +" في		
0.5	A' M(x,y) = O = M(0,0)	(1	-5
0.5	برهان بالخلف أو أية طريقة صحيحة أخرى	ب)	

3 نقط	التمرين الثاني	
		الجزء الأول
0.25	الانطلاق من $[173]$ b^3 - b^3 و ملاحظة أن 57 عدد فردي	-1
0.25	عدد a^3 و بما أن 173 عدد $b^3=\left(a^3+b^3 ight)$ - و عدد a^3 و عدد a^3 عدد النفية ع	-2

تم تحميل هذا الملف من موقع Talamidi.com

الصفحة NR 25	الامتحان الوطني الموحد للبكالوريا - الدورة العادية 2016 – عناصر الإجابة
الصفحة 2 NR 25	- مادة: الرياضيات - شعبة العلوم الرياضية (أ) و (ب) (الترجمة الفرنسية)

		أولي فإنه يقسم b و العكس صحيح لأن a و b لهما نفس الدور	
-3		a+b يقسم a إذن حسب السؤال 2- يقسم أيضا b و منه 173 يقسم a	0.25
-4	(أ	a عدد أولي و لا يقسم a إذن أولي مع a	0.25
		b - حسب السؤال 2- فإن 173 أو لي أيضا مع	
		. b مبر هنة فيرما بالنسبة للعدد a ثم بالنسبة للعدد	0.25
	ŗ)	استعمال نتيجتي السؤالين 1- و 4-أ)	0.5
	ج)	تطبيق مبر هنة كوص أو أية طريقة صحيحة أخرى	0.5
الجزء ا	الثاني		
-1		التحقق	0.25
-2		k=1 مجموع عددین صحیحین یساوی 1 نستنتج أن	0.25
		حلي المعادلة (E) في * ¥ * ′ ¥ : (86,87) و (87,86)	0.25

3.5 نقط	التمرين الثالث		
0.5	اثبات المتساوية	(1	-1
0.5	شرط تداور أربع نقط	ب)	
0.5	$z=rac{\leftert z_{1} ightert ^{2}}{\operatorname{Re}(z_{1})}$ في هذه الحالة لدينا : ، خ		-2
0.5	$z_2 = e^{ia} z_1$	(أ	-3
0.5	حسب السؤالين 1- و 3-أ) فإن: $1=\frac{ z_1-z }{ z_2-z }$ أو أية طريقة صحيحة أخرى	Û.	
0.5	$z=rac{2z_1z_2}{z_1+z_2}$ و $z_1z_2=rac{e^{i\mathbf{q}}-1}{6}$ و $z_1+z_2=rac{e^{i\mathbf{q}}+1}{6}$. الإنطلاق من	(1	-4
0.5	$0 < \frac{q}{2} < \frac{p}{2}$ $z = 2\frac{e^{iq} - 1}{e^{iq} + 1} = 2i\tan\frac{q}{2} = 2\tan\frac{q}{2}e^{i\frac{p}{2}} = \dots$	ب)	

تم تحمیل هذا الملف من موقع Talamidi.com

الصفحة 3

NR 25

الامتحان الوطني الموحد للبكالوريا - الدورة العادية 2016 - عناصر الإجابة - مادة: الرياضيات - شعبة العلوم الرياضية (أ) و (ب) (الترجمة الفرنسية)

7 نقط	التمرين الرابع		
	الجزء الأول:		
0.25	مبرهنة التزايدات المنتهية	- تطبيق	-1
0.25	$e^{q} = \frac{x}{1-e^{-x}}$ ول على على	- الحص	
0.25	$1 < e^{q} = \frac{x}{1 - e^{-x}}$ و $0 < q < x$ البينا:	(1	-2
0.25	$e^{ ext{q}} = rac{x}{1-e^{-x}} < e^x$ و $0 < ext{q} < x$	ب)	
0.25	$q=\ln e^{\frac{xe^x}{\frac{\dot{z}}{e^x}}}$ و $0 < q < x$ البينا:	(ਣ	
	الجزء الثاني		
0.5	اتصال الدالة على اليمين في 0	(1)	-1
0.25	اثبات النهاية	ب)	
0.25	التأويل المبياني		
0.25	x=0 اثبات المتفاوتة :اعتبار الجواب صحيح و لو لم يتطرق المترشح للحالة:	(1	-2
0.5	اثبات المتفاوتة المزدوجة	ب)	
0.5	التحقق	(1	-3
0.5	استنتاج النهاية	ب)	
0.25	الدالة قابلة للاشتقاق على اليمين في 0		
0.25	$]0,+rac{4}{3}$ قابلية اشتقاق الدالة على المجال	(1)	-4
0.5	f'(x) حساب		
0.5	الاستنتاج	ب)	
	الجزء الثالث		
0.5	البرهان بالترجع		-1
0.25	تناقصية باستعمال نتيجة السؤال 2-ج) من الجزء الأول أو أية طريقة أخرى	المتتالية	-2

تم تحميل هذا الملف من موقع Talamidi.com

الصفحة ND 25	الامتحان الوطني الموحد للبكالوريا - الدورة العادية 2016 – عناصر الإجابة
الصفحة 4 NR 25	- مادة: الرياضيات - شعبة العلوم الرياضية (أ) و (ب) (الترجمة الفرنسية)

0.25	المتتالية متقاربة	
0.25	0 هو الحل الوحيد باستعمال نتيجة السؤال 2 -ج) من الجزء الأول و $\ln(f(0)) = 0$ أو أية طريقة أخرى	-3
0.25	نهاية المنتالية	

3 نقط	التمرين الخامس		
0.5	$x^3 \ln 2$ الدالة $x = \frac{1}{\sqrt{e^x - 1}}$ الدالة $x = \frac{1}{\sqrt{e^x - 1}}$ الدالة	(1	-1
0.25	الدالة x a $\frac{1}{\sqrt{e^x-1}}$ الدالة على المجال x الدالة المجال المجال x الدالة الدالة المحال x الدالة الد	Ĵ.	
0.25	حساب الدالة المشتقة الأولى.		
0.25	I الدالة F تز ايدية قطعا على المجال I	ج)	
0.5	حساب التكامل بتقنية تغيير المتغير و لا تقبل أية طريقة أخرى	(1	-2
0.25	حساب النهاية الأولى	ب)	
0.25	حساب النهاية الثانية		
0.25	الدالة تقابل من I نحو $rac{\dot{\mathbf{p}}}{2}, rac{\dot{\mathbf{p}}}{2}$ تمنح النقطة كاملة و لو أخطأ المترشح في تحديد $\ddot{\mathbf{g}}$	(1	-3
0.5	الاكتفاء بتحديد الصيغة: أخرى صحيحة $F^{-1}(x) = \ln \frac{\xi}{\xi} + \frac{1}{4}$ أو أية صيغة أخرى صحيحة $\cos^2 \xi \frac{x}{2} + \frac{p}{4}$	Ţ.	