

# الامتحان الوطني الموحد للبكالوريا الدورة الاستدراكية 2013 متمانات والتوجيد الدورة الاستدراكية 1825





| الرياضيات                                         | المادة                |
|---------------------------------------------------|-----------------------|
| شعبة العلوم الرياضية (أ) و (ب) (الترجمة الفرنسية) | الشعب(ة)<br>أو المسلك |

- La durée de l'épreuve est de 4 heures.
- L'épreuve comporte cinq exercices indépendants deux à deux.
- Les exercices peuvent être traités selon l'ordre choisi par le candidat.
  - Le premier exercice se rapporte aux structures algébriques.
  - Le deuxième exercice se rapporte au calcul des probabilités
  - Le troisième exercice se rapporte aux nombres complexes.
  - Le quatrième exercice se rapporte à l'analyse.
  - Le cinquième exercice se rapporte à l'analyse.

### L'USAGE DES CALCULATRICES NON PROGRAMMABLES EST AUTORISE

L'usage de la couleur rouge n'est pas permis

RS25

الامتحان الوطني الموحد للبكالوريا -الدورة الاستدراكية على العرضوع- مادة: الرياضيات- شعبة العلوم الرياضية (أ) و (ب) (الترجمة الفرنسية)

# **Exercice1**:(3,5 points) les parties I et II sont indépendantes

- I- Pour tout x et y de l'intervalle G = ]1, 2[ on pose :  $x * y = \frac{2(x-1)(y-1) + (x-2)(y-2)}{(x-1)(y-1) + (x-2)(y-2)}$
- 0.5 1-Montrer que \* est une loi de composition interne dans G
  - 2-On rappelle que  $\left( \square + \times \right)$  est un groupe commutatif.
    - On considère l'application f de  $\begin{bmatrix} * \\ + \end{bmatrix}$  vers G définie par :  $f(x) = \frac{x+2}{x+1}$
- 0.75 a)Montrer que f est un isomorphisme de  $\left(\square_+^*,\times\right)$  dans  $\left(G,*\right)$
- 0.5 b)En déduire que (G,\*) est un groupe commutatif dont on déterminera l'élément neutre.
  - **II-**On rappelle que  $(M_3(\Box), +, \times)$  est un anneau unitaire dont le zéro est  $O = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$
  - et l'unité est  $I = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$  et que  $\left( \mathbf{M}_3 \left( \Box \right), +, \cdot \right)$  est un espace vectoriel réel

et on pose : 
$$A = \begin{pmatrix} 0 & 3 & 2 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$

- 0.5 1-a)Vérifier que :  $A^3=O$  et en déduire que A est un diviseur de zéro dans l'anneau  $\left(\mathbf{M}_3\left(\Box\right),+,\times\right)$
- b) Vérifier que :  $(A^2 A + I)(A + I) = I$  en déduire que la matrice A + I admet un inverse dans  $(\mathbf{M}_3(\square), +, \times)$  que l'on déterminera.
- 2-Pour tout a et b de  $\square$  on pose : M(a,b) = aI + bA et l'on considère l'ensemble  $E = \left\{ M(a,b) / (a,b) \in \square^2 \right\}$  Montrer que  $(E,+,\cdot)$  est un espace vectoriel réel dont on déterminera une base.

## Exercice2 :(3points)

1 0.5 Une urne contient 3 boules rouges et 4 boules noires indiscernables au toucher.

- I- On tire au hasard successivement et avec remise quatre boules de l'urne . et on considère l a variable aléatoire X égale au nombre de boules noires tirées.
  - 1- Déterminer la loi de probabilité de la variable aléatoire X
  - 2- Calculer E(X) l'espérance mathématique de la variable aléatoire X

II-On réalise l'expérience aléatoire suivante en trois étapes :

Etape 1 :On tire une boule de l'urne ,on marque sa couleur et on la remet dans l'urne.

Etape 2 :On ajoute dans l'urne 5 boules de même couleur que la boule tirée à l'étape 1

<u>Etape 3</u>: On tire successivement et sans remise 3 boules de l'urne qui contient alors 12 boules après l'étape 2

1

## **RS25**

الامتحان الوطني الموحد للبكالوريا -الدورة الاستدراكية 13 كاك الموضوع- مادة: الرياضيات- شعبة العلوم الرياضية (أ) و (ب) (الترجمة الفرنسية)

On considère les évènements suivants :

- N "la boule tirée à l'étape 1 est noire"
- R "la boule tirée à l'étape 1 est rouge"
- E "toutes les boules tirées à l'étape 3 sont noires "
- 0.5
- $p(E \cap N) = \frac{12}{55}$ 1) Montrer que:
- 2) Calculer p(E)0.5
- 0.5 3) Calculer la probabilité de l'événement R sachant que E est realisé.

## Exercice 3 : (3.5points)

I- Soit *a* un nombre complexe différent de 1

(E):  $2z^2 - 2(a-1)z + (a-1)^2 = 0$ On considère dans l'ensemble l'équation :

- 1) Montrer que :  $z_1 = \frac{(a-1)}{2}(1+i)$  et  $z_2 = \frac{(a-1)}{2}(1-i)$  sont les deux solutions de l'équation (E)0.5
  - 2) On prend  $a = e^{i\theta}$  avec  $0 < \theta < \pi$
- a-Montrer que :  $a-1=2\sin\frac{\theta}{2}e^{i\left(\frac{\theta+\pi}{2}\right)}$ 0.5
  - b- En déduire la forme trigonométrique de  $z_1$  et  $z_2$ 
    - II- Le plan complexe étant rapporté à un repère orthonormé direct (O, u, v)
    - On admet que  $\operatorname{Re}(a) < 0$  et on considère les points A(a), B(-i), C(i) et B'(1)
- 1) Déterminer en fonction de a , les affixes des points J et K milieux respectifs de  $\lceil AC \rceil$  et  $\lceil AB \rceil$ 0.5
  - 2) Soit  $r_1$  la rotation de centre J et d'angle  $\frac{\pi}{2}$  et  $r_2$  la rotation de centre K et d'angle  $\frac{\pi}{2}$
  - On pose  $C^{'}=r_1(C)$  et  $A^{'}=r_2(A)$  et soient  $c^{'}$  l'affixe de  $C^{'}$  et  $a^{'}$  l'affixe de  $A^{'}$
- $\text{Montrer que}: \quad a' = z_1 \quad \text{et} \quad c' = z_2$ 0.5
- 3) Calculer  $\frac{a'-c'}{a-1}$  et en déduire que la droite (AB') est une hauteur du triangle A'B'C'0.5

# Exercice 4: (8.25 points)

- 1-Soit f la fonction numérique définie  $\sup[0,+\infty[$  par :  $\begin{cases} f(x) = \frac{1}{\sqrt{1+x^2 \ln^2 x}} \\ f(0) = 1 \end{cases}$
- a) Montrer que f est continue à droite au point 0 , puis calculer  $\lim_{x \to +\infty} f(x)$ 0.5
- b)Etudier la dérivabilité de f à droite au point 0 (On pourra utiliser le résultat  $\lim x \ln^2 x = 0$ ) 0.5
- c) Montrer que f est dérivable sur  $]0,+\infty[$  et que :  $(\forall x>0)$  ;  $f'(x)=\frac{-x\ln x(1+\ln x)}{3}$ 0.5
- d)Donner le tableau de variation de la fonction f0.5

## تم تحميل هذا الملف من موقع Talamidi.com

#### الصفحة 4 4

RS25

الامتحان الوطني الموحد للبكالوريا -الدورة الاستدراكية 13 20 —الموضوع- مادة: الرياضيات- شعبة العلوم الرياضية (أ) و (ب) (الترجمة الفرنسية)

- 2- Soit F la fonction numérique définie  $\sup[0,+\infty[$  par :  $F(x) = \int_0^x f(t)dt$
- et soit  $(C_F)$  la courbe représentative de F dans un repère orthonormé $(O; \overrightarrow{i}, \overrightarrow{j})$
- 0.25 a)Déterminer une primitive de la fonction  $x \mapsto \frac{1}{x \ln x}$  sur l'intervalle  $[e, +\infty[$
- 0.5 b)Montrer que :  $(\forall t \ge e)$  ;  $t \ln t \le \sqrt{1 + t^2 \ln^2 t} \le \sqrt{2} t \ln t$
- 0.75 c)Montrer que :  $(\forall x \ge e)$  ;  $\frac{1}{\sqrt{2}} \ln(\ln x) \le \int_e^x \frac{1}{\sqrt{1+t^2 \ln^2 t}} dt \le \ln(\ln x)$
- 0.5 d)En déduire que:  $\lim_{x \to +\infty} F(x) = +\infty$  et  $\lim_{x \to +\infty} \frac{F(x)}{x} = 0$
- 0.5 e)Montrer que  $(C_F)$  admet deux points d'inflexions dont on déterminera les abscisses.
- 1 f) Construire  $(C_F)$  (on prend  $F(1) \square 0,5$  et  $F\left(\frac{1}{e}\right) \square 0,4$ )
  - 3- Pour tout x de  $[0,+\infty]$  on pose :  $\varphi(x) = x F(x)$
- 0.75 a) Montrer que  $\lim_{x \to +\infty} \varphi(x) = +\infty$  et étudier les variations de  $\varphi$
- b)Montrer que pour tout entier naturel n, l'équation  $\varphi(x) = n$  admet une seule solution  $\alpha_n$  dans l'intervalle  $[0,+\infty[$
- 0.5 c) Montrer que:  $(\forall n \in \Box)$ ;  $\alpha_n \ge n$  puis calculer:  $\lim_{n \to +\infty} \alpha_n$
- 0.5 4-a), Montrer que :  $(\forall n \ge 1)$ ;  $0 \le \frac{F(\alpha_n)}{\alpha_n} \le \frac{F(n)}{n} + f(n)$  (On pourra utiliser le théorème des accroissements finis)
- 0.5 b)Calculer:  $\lim_{n \to +\infty} \frac{\alpha_n}{n}$

# Exercice5: (1.75 points)

Pour tout entier naturel non nul n on pose :  $u_n = \left(\frac{\arctan(n)}{\arctan(n+1)}\right)^{n^2}$  et  $v_n = \ln(u_n)$ 

- 0.25 1-Vérifier que :  $(\forall n \ge 1)$ ;  $v_n = n^2 \left( \ln \left( \arctan(n) \right) \ln \left( \arctan(n+1) \right) \right)$ 
  - 2-En utilisant le théorème des accroissements finies, montrer que :

0.5 
$$(\forall n \ge 1) (\exists c \in ]n, n+1[) ; v_n = \frac{-n^2}{(1+c^2)\arctan(c)}$$

- 0.5 3-Montrer que :  $(\forall n \ge 1)$ ;  $\frac{-n^2}{(1+n^2)\arctan(n)} < v_n < \frac{-n^2}{(1+(n+1)^2)\arctan(n+1)}$
- 0.5 4-Calculer:  $\lim_{n \to +\infty} u_n$

**FIN**