Exercices d'applications et sur les espaces vectoriels

PROF : ATMANI NAJIB 2ème BAC Sciences maths

Exercices AVEC SOLUTIONS Espaces vectoriels

Exercice1: Justifier si les objets suivants sont des espaces vectoriels sur \mathbb{R}

- (a) L'ensemble des fonctions réelles sur [0, 1], continues, positives ou nulles, pour l'addition et le produit par un réel.
- (b) L'ensemble des fonctions réelles sur \mathbb{R} vérifiant $\lim_{x\to +\infty} f(x) = 0$ pour les mêmes opérations.
- (c) L'ensemble des fonctions sur \mathbb{R} telles que : f(3) = 7.

Exercice2: dans l'espace vectoriel $\left(V_2;+;.\right)$

déterminer le scalaire α et le vecteur \vec{u} tel que :

$$(3\alpha^2 - 5\alpha + 2)\vec{u} = \vec{0}$$

Solutions :on utilusant les Régles de calculs dans un espace vectoriel on a donc :

$$(3\alpha^2 - 5\alpha + 2)\vec{u} = \vec{0} \Leftrightarrow \vec{u} = \vec{0} \text{ ou } 3\alpha^2 - 5\alpha + 2 = 0$$

$$\Leftrightarrow \vec{u} = \vec{0} \text{ ou } \alpha = \frac{2}{3} \text{ ou } \alpha = 1$$

Donc l'ensembles des solutions est :

$$S = \left\{ \left\{ 1; \frac{2}{3} \right\} \times V_2 \cup \left(\mathbb{R} \times \left\{ \vec{0} \right\} \right) \right\}$$

Exercice3: on considére l'ensemble :

$$F = \left\{ \left(x; y \right) \in \mathbb{R}^2 / y = 2x \right\}$$

Montrer que F est un sous -espace vectoriel de l'espace vectoriel $\left(\mathbb{R}^2;+;.\right)$

Solution: a)on a $F \subset \mathbb{R}^2$

b)Et on a : $(0;0) \in F$ car : $0=2\times0$ donc : $F \neq \emptyset$

c) soient (x; y) et (x'; y') sont deux éléments de F

donc: y = 2x et y' = 2x'

et $(\lambda; \mu) \in \mathbb{R}^2$ montrons que : $\lambda(x; y) + \mu(x'; y') \in F$?

$$\lambda(x;y) + \mu(x';y') = (\lambda x; \lambda y) + (\mu x'; \mu y')$$

$$\lambda(x; y) + \mu(x'; y') = (\lambda x + \mu x'; \lambda y + \mu y')$$

$$\lambda y + \mu y' = \lambda 2x + \mu 2x' = 2(\lambda x + \mu x')$$

Donc: $\lambda(x; y) + \mu(x'; y') \in F$

 ${\rm Donc}: F \ \ {\rm est} \ {\rm un} \ {\rm sous} \ {\rm -espace} \ {\rm vectoriel} \ {\rm de}$

l'espace vectoriel $(\mathbb{R}^2;+;.)$

Exercice4: on considére l'ensemble:

$$F = \left\{ \begin{pmatrix} a+b & b \\ -b & a-b \end{pmatrix} / (a;b) \in \mathbb{R}^2 \right\}$$

Montrer que (F;+;.) est un espace vectoriel sur $\mathbb R$

Solution : on sait que $ig(M_{_2}(\mathbb{R});+;.ig)$ est un

espace vectoriel sur $\mathbb R$

Il suffit de montrer que : F est un sous -espace

vectoriel de $(M_2(\mathbb{R});+;.)$

a) on a:
$$\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0+0 & 0 \\ -0 & 0-0 \end{pmatrix} \in F \text{ donc} : F \neq \emptyset$$

c) soient
$$M_1 = \begin{pmatrix} a_1 + b_1 & b_1 \\ -b_1 & a_1 - b_1 \end{pmatrix}$$
 et $M_2 = \begin{pmatrix} a_2 + b_2 & b_2 \\ -b_2 & a_2 - b_2 \end{pmatrix}$

deux éléments de F et $(\alpha; \beta) \in \mathbb{R}^2$ montrons que :

$$\alpha M_1 + \beta M_1 \in F$$
?

$$\alpha M_1 + \beta M_1 = \alpha \begin{pmatrix} a_1 + b_1 & b_1 \\ -b_1 & a_1 - b_1 \end{pmatrix} + \beta \begin{pmatrix} a_2 + b_2 & b_2 \\ -b_2 & a_2 - b_2 \end{pmatrix}$$

$$= \begin{pmatrix} \alpha(a_{1} + b_{1}) & \alpha b_{1} \\ -\alpha b_{1} & \alpha(a_{1} - b_{1}) \end{pmatrix} + \begin{pmatrix} \beta(a_{2} + b)_{2} & \beta b_{2} \\ -\beta b_{2} & \beta(a_{2} - b_{2}) \end{pmatrix}$$

$$= \begin{pmatrix} \alpha(a_{1} + b_{1}) + \beta(a_{2} + b)_{2} & \alpha b_{1} + \beta b_{2} \\ -(\alpha b_{1} + \beta b_{2}) & \alpha(a_{1} - b_{1}) + \beta(a_{2} - b_{2}) \end{pmatrix}$$

$$= \begin{pmatrix} (\alpha a_{1} + \beta a_{2}) + (\alpha b_{1} + \beta b_{2}) & \alpha b_{1} + \beta b_{2} \\ -(\alpha b_{1} + \beta b_{2}) & (\alpha a_{1} + \beta a_{2}) - (\alpha b_{1} + \beta b_{2}) \end{pmatrix}$$

On pose : $d = \alpha b_1 + \beta b_2$ et $c = \alpha a_1 + \beta a_2$

Donc:
$$\alpha M_1 + \beta M_1 = \begin{pmatrix} c+d & d \\ -d & c-d \end{pmatrix} \in F$$

Donc : (F;+;.) est un espace vectoriel sur $\mathbb R$

Exercice5 : on considére l'ensemble :

$$F = \left\{ \begin{pmatrix} a & -2b \\ b & 3a \end{pmatrix} / (a;b) \in \mathbb{R}^2 \right\}$$

Montrer que (F;+;.) est un espace vectoriel sur $\mathbb R$

Solution : on sait que $ig(M_{_2}ig(\mathbb{R}ig);+;.ig)$ est un

espace vectoriel sur ${\mathbb R}$

Il suffit de montrer que : F est un sous -espace vectoriel de $ig(M_{_2}ig(\mathbb{R}ig);+;.ig)$

a) on a:
$$\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & -2 \times 0 \\ 0 & 3 \times 0 \end{pmatrix} \in F \text{ donc} : F \neq \emptyset$$

c) soient
$$M_1 = \begin{pmatrix} a & -2b \\ b & 3a \end{pmatrix}$$
 et $M_2 = \begin{pmatrix} c & -2d \\ d & 3c \end{pmatrix}$

deux éléments de F et $(\alpha;\beta) \in \mathbb{R}^2$ montrons que :

$$\alpha M_1 + \beta M_2 \in F$$
?

$$\alpha M_1 + \beta M_1 = \alpha \begin{pmatrix} a & -2b \\ b & 3a \end{pmatrix} + \beta \begin{pmatrix} c & -2d \\ d & 3c \end{pmatrix}$$

$$\alpha M_1 + \beta M_1 = \begin{pmatrix} \alpha a & -2\alpha b \\ \alpha b & 3\alpha a \end{pmatrix} + \begin{pmatrix} \beta c & -2\beta d \\ \beta d & 3\beta c \end{pmatrix}$$

$$\alpha M_1 + \beta M_1 = \begin{pmatrix} \alpha a + \beta c & -2(\alpha b + \beta d) \\ \alpha b + \beta d & 3(\alpha a + \beta c) \end{pmatrix}$$

On pose : $f = \alpha b + \beta d$ et $e = \alpha a + \beta c$

Donc:
$$\alpha M_1 + \beta M_1 = \begin{pmatrix} e & -2f \\ f & 3e \end{pmatrix} \in F$$

Donc : (F;+;.) est un espace vectoriel sur $\mathbb R$

Exercice6: dans espace vectoriel réel $(M_2(\mathbb{R});+;.)$

o n considére les matrices :

$$M_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$
 et $M_2 = \begin{pmatrix} 1 & 1 \\ 0 & 4 \end{pmatrix}$

est-ce que la matrice :

$$M = \begin{pmatrix} 2 & 5 \\ 3 & 8 \end{pmatrix}$$
 est une combinaison linéaire des

matrices : M_1 et M_2 ?

Solution : on cherche $(\alpha; \beta) \in \mathbb{R}^2$ tel

que : $M = \alpha M_1 + \beta M_2$?

$$\begin{pmatrix} 2 & 5 \\ 3 & 8 \end{pmatrix} = \alpha \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} + \beta \begin{pmatrix} 1 & 1 \\ 0 & 4 \end{pmatrix}$$

$$\begin{pmatrix} 2 & 5 \\ 3 & 8 \end{pmatrix} = \begin{pmatrix} 0 & \alpha \\ \alpha & 0 \end{pmatrix} + \begin{pmatrix} \beta & \beta \\ 0 & 4\beta \end{pmatrix}$$

$$\begin{pmatrix} 2 & 5 \\ 3 & 8 \end{pmatrix} = \begin{pmatrix} \beta & \alpha + \beta \\ \alpha & 4\beta \end{pmatrix} \Leftrightarrow \begin{cases} \alpha = 3 \\ \beta = 2 \\ \alpha + \beta = 5 \\ 4\beta = 8 \end{cases}$$

On a donc : $M = 3M_1 + 2M_2$

donc : M est une combinaison linéaire des

matrices : M_1 et M_2

Exercice7: dans: $(\mathbb{R}^2;+;.)$ on considére les

Vecteurs: $\vec{x}_1 = (1,-2)$ et $\vec{x}_2 = (5,1)$ et $\vec{x}_3 = (-7,2)$

Est-ce que le vecteur : \vec{x}_3 est une combinaison

linéaire des vecteurs : \vec{x}_1 et \vec{x}_2 ?

Solution: on cherche $(\alpha; \beta) \in \mathbb{R}^2$ tel

que : $\vec{x}_3 = \alpha \vec{x}_1 + \beta \vec{x}_2$?

$$\vec{x}_3 = \alpha \vec{x}_1 + \beta \vec{x}_2 \Leftrightarrow (-7, 2) = \alpha (1, -2) + \beta (5, 1)$$

$$\Leftrightarrow$$
 $(-7;2) = (\alpha;-2\alpha) + (5\beta;\beta)$

$$\Leftrightarrow (-7;2) = (\alpha + 5\beta; -2\alpha + \beta) \Leftrightarrow \begin{cases} \alpha + 5\beta = -7 \\ -2\alpha + \beta = 2 \end{cases}$$

$$\Leftrightarrow \begin{cases} 2\alpha + 10\beta = -14 \\ -2\alpha + \beta = 2 \end{cases} \Rightarrow 11\beta = -12 \Rightarrow \beta = -\frac{12}{11} \text{ et } \alpha = \frac{-17}{11}$$

On a donc :
$$\vec{x}_3 = \frac{5}{11}\vec{x}_1 - \frac{17}{11}\vec{x}_2$$

donc : \vec{x}_3 est une combinaison linéaire des

vecteurs : \vec{x}_1 et \vec{x}_2

b) Dans le l'espace vectoriel $\left(\mathbb{R}^3;+;.\right)$

(3, 3, 1) est combinaison linéaire des vecteurs (1, 1, 0) et (1, 1, 1) car on a l'égalité

$$(3, 3, 1) = 2(1, 1, 0) + 1(1, 1, 1).$$

c) dans : $(\mathbb{R}^2;+;.)$: le vecteur $\vec{x}=$ (2,1) n'est

pas colinéaire au vecteur $\vec{y} = (1,1)$ car s'il l'était, il

existerait un réel λ tel que $\vec{x} = \lambda \vec{y}$

ce qui équivaudrait à l'égalité (2, 1) = (λ, λ) . faux

Exercice8: dans $(\mathbb{R}_n[X];+;.)$ l'espace

vectoriel des polynômes de degrés inferieur a 2

on considére les polynômes : $P_1(x) = x^2 - x$;

$$P_2(x) = 1 + x^2 + x$$
 et $P_3(x) = 8 - x^2$

Est-ce que le polynôme : $P(x) = -2x^2 - 2x + 15$ est

une combinaison linéaire des polynômes :

$$P_1(x)$$
 et $P_2(x)$ et $P_3(x)$?

Solution: on peut remarquer que:

$$P(x) = 1 \times P_1(x) - 1 \times P_2(x) + 2 \times P_3(x)$$

donc : le polynôme : P(x) est une combinaison

linéaire des polynômes $P_1(x)$ et $P_2(x)$ et $P_3(x)$

Exercice9: Soit $E = F(\mathbb{R}; \mathbb{R})$ l'espace vectoriel des

fonctions réelles. Soient f_0 , f_1 , f_2 et f_3 les fonctions définies par : $\forall x \in \mathbb{R} \ f_0(x) = 1$, $f_1(x) = x$, $f_2(x) = x^2$, $f_3(x) = x^3$. Alors la fonction f définie par :

$$\forall x \in \mathbb{R} \ f(x) = x^3 - 2x^2 - 7x - 4$$

Montrer que f est combinaison linéaire des fonctions f₀, f₁, f₂, f₃

Solution : puisque l'on a l'égalité :

$$f = f_3 - 2f_2 - 7f_1 - 4f_0$$

alors f est combinaison linéaire des fonctions : f₀, f₁, f₂, f₃

Exercice10: dans espace vectoriel réel

 $(M_2(\mathbb{R});+;.)$ On considére la famille :

$$B = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}; \begin{pmatrix} 2 & 1 \\ 0 & 1 \end{pmatrix}; \begin{pmatrix} 0 & 1 \\ 2 & 0 \end{pmatrix}$$
 et on considére la

matrice :
$$M = \begin{pmatrix} 1 & 4 \\ 10 & -4 \end{pmatrix}$$

Montrer que la matrice M est engendré par la famille B

Solution : on cherche $(a;b;c) \in \mathbb{R}^2$ tel :

$$M = a \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} + b \begin{pmatrix} 2 & 1 \\ 0 & 1 \end{pmatrix} + b \begin{pmatrix} 0 & 1 \\ 2 & 0 \end{pmatrix}$$

On a donc :
$$\begin{pmatrix} a+2b & b+c \\ 2c & -a+b \end{pmatrix} = \begin{pmatrix} 1 & 4 \\ 10 & -4 \end{pmatrix}$$

Donc:
$$M = 3 \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} - \begin{pmatrix} 2 & 1 \\ 0 & 1 \end{pmatrix} + 5 \begin{pmatrix} 0 & 1 \\ 2 & 0 \end{pmatrix}$$

donc : *M* est engendré par la famille *B* **Exercice11:**dans l'espace vectoriel réel

 $\left(\mathbb{R}^2;+;.\right)$ on considére les vecteurs :

$$\vec{x}_1 = (3,2) \text{ et } \vec{x}_2 = (1,5) \text{ et la familleB} = (\vec{x}_1; \vec{x}_2)$$

Montrer que la famille B=(\vec{x}_1 ; \vec{x}_2) engendre

l'espace vectoriel réel $\,\mathbb{R}^{\,2}\,$

Solution: Montrons que $\forall \vec{x} \in \mathbb{R}^2$

 $\exists (\alpha_1; \alpha_2) \in \mathbb{R}^2 \text{ Tel que } : \vec{x} = \alpha_1 \vec{x}_1 + \alpha_2 \vec{x}_2$

On pose : $\vec{x} = (a;b)$

$$\vec{x} = \alpha_1 \vec{x}_1 + \alpha_2 \vec{x}_2 \Leftrightarrow (a;b) = \alpha_1(3;2) + \alpha_2(1;5)$$

$$\Leftrightarrow$$
 $(a;b) = (3\alpha_1; 2\alpha_1) + (\alpha_2; 5\alpha_2)$

$$\Leftrightarrow$$
 $(a;b) = (3\alpha_1 + \alpha_2; 2\alpha_1 + 5\alpha_2)$

$$\Leftrightarrow \begin{cases} a = 3\alpha_1 + \alpha_2 \\ b = 2\alpha_1 + 5\alpha_2 \end{cases} \Leftrightarrow \begin{cases} \alpha_1 = \frac{1}{13} (5a - b) \\ \alpha_2 = \frac{1}{13} (-2a + 3b) \end{cases}$$

donc :famille B=(\vec{x}_1 ; \vec{x}_2) engendre l'espace

vectoriel réel \mathbb{R}^2

Exercice12: On munit \mathbb{R}^3 des opérations usuelles. Soient $F_1 = \{(\lambda, \lambda, \lambda), \lambda \in \mathbb{R}\},$

$$F_2 = \{ (\lambda - 3\mu, 2\mu, \lambda + \mu), (\lambda, \mu) \in \mathbb{R}^2 \}$$

$$F_3 = \{ (x, y, z) \in \mathbb{R}^3 / x - y + z = 0 \}$$
 et

$$F_4 = \{ (x, y, z) \in \mathbb{R}^3 / x + 2y + 3z = 0 \text{ et }$$

$$2x + 5y + z = 0$$

Montrer que F_1 , F_2 , F_3 et F_4 sont des sous-espaces de \mathbb{R}^3 et en fournir dans chaque cas une famille génératrice.

Solution.

• F1 =
$$\{(\lambda, \lambda, \lambda), \lambda \in \mathbb{R} \}$$
 = $\{\lambda(1, 1, 1), \lambda \in \mathbb{R} \}$ =

 $Vect(\vec{x}_1)$ où $\vec{x}_1 = (1, 1, 1)$. F_1 est donc un sous-

espace vectoriel de \mathbb{R}^3 et une

famille génératrice de F_1 est (\vec{x}_1) .

• F₂ ={
$$(\lambda - 3\mu, 2\mu, \lambda + \mu), (\lambda, \mu) \in \mathbb{R}^{2}$$
}

=
$$\{\lambda(1, 0, 1) + \mu(-3, 2, 1), (\lambda, \mu) \in \mathbb{R}^2\}$$

= Vect(
$$\vec{x}_1$$
, \vec{x}_2) où \vec{x}_1 = (1, 0, 1) et \vec{x}_1 =(-3, 2, 1).

 F_2 est donc un sous-espace vectoriel de \mathbb{R}^3

et une famille génératrice de F2 est \vec{x}_1 , \vec{x}_2)

• Soit (x, y, z) $\in \mathbb{R}^3$

$$. x - y + z = 0 \Leftrightarrow z = -x + y.$$

Donc,
$$F_3 = \{ (x, y, -x + y), (x, y) \in \mathbb{R}^2 \}$$

$$= \{x(1, 0, -1) + y(0, 1, 1), (x, y) \in \mathbb{R}^{2}\}$$

= Vect(\vec{x}_1 , \vec{x}_2) où \vec{x}_1 = (1, 0, -1) et \vec{x}_2 =(0, 1, 1).

F₃ est donc un sous-espace vectoriel de \mathbb{R}^3 et une famille génératrice de F₃ est (\vec{x}_1, \vec{x}_2) .

• Soit $(x, y, z) \in \mathbb{R}^3$

$$x + 2y + 3z = 0$$
 et $2x + 5y + z = 0$

$$\Leftrightarrow$$
x = -2y - 3z et 2(-2y - 3z) + 5y + z = 0

 \Leftrightarrow y = 5z et x = -13z.

Donc, $F_4 = \{(-13z, 5z, z), z \in \mathbb{R} \}$

=
$$\{z(-13, 5, 1), z \in \mathbb{R} \}$$
 = Vect(\vec{x}) où

 $\vec{x} = (-13, 5, 1)$. F₄ est donc un sous-espace vectoriel de \mathbb{R}^3 et une famille génératrice de F₄ est (\vec{x}).

Exercice13:dans l'espace vectoriel réel

 $(\mathbb{R}^3;+;.)$ on considére la famille :

$$B = (\vec{u}; \vec{v}; \vec{w})$$
 tel que : $\vec{u} = (\cos a; \cos b; \cos c)$

 $\vec{v} = (\sin a; \sin b; \sin c)$ et

$$\vec{w} = (\sin(x+a); \sin(x+b); \sin(x+c))$$

Avec; $(a;b;c) \in \mathbb{R}^3$

Montrer que la famille *B* est liée **Solution**.

On a: $\sin(x+a) = \sin x \cos a + \cos x \sin a$

$$\sin(x+b) = \sin x \cos b + \cos x \sin b$$

$$\sin(x+c) = \sin x \cos c + \cos x \sin c$$

Donc:

 $\vec{w} = \sin x (\cos a; \cos b; \cos c) + \cos x (\sin a; \sin b; \sin c)$

Donc: $\vec{w} = \sin x\vec{u} + \cos x\vec{v}$ et puisque:

 $(\sin x; \cos x) \neq (0;0)$ alors la famille *B* est liée

Exercice14:On munit \mathbb{R}^3 des opérations usuelles.

Soit:
$$E = \{(x, y, z) \in \mathbb{R}^3 / x - y + 3z = 0\}$$

Montrons que E est un $\ensuremath{\mathbb{R}}$ -espace vectoriel Et donner une famille génératrice de E et une base de E

Solutions : Il suffit de montrer que est un sousespace vectoriel de \mathbb{R}^3

a) $E \neq \emptyset$ car : $(0,0,0) \in E$ en effet : $0-0+3\times 0=0$

b)soient : $\vec{u} = (a;b;c) \in E$ et $\vec{v} = (x;y;z) \in E$

et $(\alpha; \beta) \in \mathbb{R}^2$

 $\alpha \vec{u} + \beta \vec{v} = (\alpha a; \alpha b; \alpha c) + (\beta x; \beta y; \beta z)$

 $\alpha \vec{u} + \beta \vec{v} = (\alpha a + \beta x; \alpha b + \beta y; \alpha c + \beta z)$

 $(\alpha a + \beta x) - (\alpha b + \beta y) + 3(\alpha c + \beta z) =$

 $=(\alpha a - \alpha b + 3\alpha c) + (\beta x - \beta y + 3\beta z)$

 $\vec{u} = (a;b;c) \in E \Leftrightarrow a-b+3c=0$

Donc: $\alpha a - \alpha b + 3\alpha c = 0$

De même : $\vec{v} = (x; y; z) \in E \Leftrightarrow x - y + 3z = 0$

Donc: $\beta x - \beta y + 3\beta z = 0$

Donc: $(\alpha a + \beta x) - (\alpha b + \beta y) + 3(\alpha c + \beta z) = 0$

Donc: $\alpha \vec{u} + \beta \vec{v} \in E$

Donc : E est un $\ensuremath{\mathbb{R}}$ -espace vectoriel

2) $(x, y, z) \in E \Leftrightarrow x - y + 3z = 0$

Soit: $\vec{u} = (a;b;c) \in E \Leftrightarrow a-b+3c=0 \Leftrightarrow a+3c=b$

 $\vec{u} = (a;b;c) = (a;a+3c;c) = a(1;1;0) + c(0;3;1)$

Donc:

 $\vec{u} = (a;b;c) = (a;a+3c;c) = a(1;1;0) + c(0;3;1)$

On pose : $\vec{e}_1 = (1;1;0)$ et $\vec{e}_2 = (0;1;0)$ et $\vec{e}_3 = (0;3;1)$

On a donc : $\vec{u} = a\vec{e}_1 + c\vec{e}_2$

Donc : $B = (\vec{e}_1; \vec{e}_2)$ est une famille génératrice de E

Montrons que $B = (\vec{e}_1; \vec{e}_2)$ est une famille libre ?

Soient : $(\alpha; \beta) \in \mathbb{R}^2$ Tel que

 $\alpha \vec{e}_1 + \beta \vec{e}_2 = \vec{0} \Leftrightarrow (\alpha; \alpha + 3\beta; \beta) = (0; 0; 0)$

 $\Leftrightarrow \alpha = 0$ ou $\alpha + 3\beta = 0$ ou $\beta = 0$

 $\Leftrightarrow \alpha = 0$ ou $\beta = 0$

Donc : $B = (\vec{e}_1; \vec{e}_2)$ est une famille libre

Donc : $B = (\vec{e}_1; \vec{e}_2)$ est une base de E

« C'est en forgeant que l'on devient forgeron » Dit un proverbe.

C'est en s'entraînant régulièrement aux calculs et exercices Que l'on devient un mathématicien

