Exercice 1:

En utilisant la définition de la dérivée, étudier la dérivabilité de la fonction f en a dans les cas suivants:

1.
$$f(x) = 2x^2 - |x-1| + 1$$
; $a = 1$

2.
$$f(x) = \frac{x-3}{2x+1}$$
; $a = -1$

3.
$$\begin{cases} f(x) = 2x^2 - x & ; x < 0 \\ f(x) = x\sqrt{x} & ; x \ge 0 \end{cases}; \quad a = 0$$

Exercice 2:

Donner une approximation affine à la fonction f au voisinage de a dans les cas suivants:

1.
$$f(x) = x^2 - x + 1$$
; $a = 1$

2.
$$f(x) = \frac{2x-1}{x+3}$$
; $a = -2$

3.
$$f(x) = x^3 - x^2 - 3x - 11$$
; $a = 3$

Exercice 3:

Déterminer les dérivées de chacune des fonctions suivantes :

1.
$$f: x \mapsto \sqrt{x^2 - 1} \quad \text{sur } [2; +\infty[$$
.

2.
$$h: x \mapsto \left(\frac{1}{x} - 2x\right)^3 \operatorname{sur} \mathbb{R}^*$$
.

Exercice 4:

Déterminer la dérivée de la fonctions f dans les cas suivants :

$$f(x) = 3x^4 - 6x^2 + 12x - 9$$
; $f(x) = x^4 - \sqrt{6}x^3 + 2x$

$$f(x) = \frac{x}{x^2 - 1}$$
; $f(x) = \frac{2x + 1}{x - 1}$; $f(x) = (x^2 - 2x)^3$

;
$$f(x) = \sqrt{3x^4 + 4x}$$
 ; $f(x) = \left(\sqrt{x} - \frac{1}{x}\right)^2$

Exercice 5 :

Etudier la dérivabilité de la fonction f , donner son ensemble de dérivabilité puis calculer sa dérivée f ' :

$$f(x) = (x^3 - 2x + 2)^3$$
; $f(x) = \frac{1}{x^2 + 1}$;

$$f(x) = \frac{1}{x(x^2+1)}$$
; $f(x) = \frac{\sqrt{x-1}}{x^2+1}$; $f(x) = \frac{1}{|x|+1}$

Exercice 6 :

Étudier les variations de la fonction f dans les cas suivants :

$$f(x) = x^3 - 3x^2 + 3$$
 ; $f(x) = \frac{x-2}{x^2 - 1}$;

$$f(x) = \sqrt{x^2 - 2x}$$
; $f(x) = x^2 + |x| + 2$;

Exercice 7:

f est la fonction définie sur $Df =]-\infty; 3[\cup]3; +\infty[$ par $f(x) = \frac{ax+b}{x-3}$ où a et b sont réels. On sait que la droite d'équation y = 4 est asymptote à la courbe représentative de f en $+\infty$. De plus $f'(1) = \frac{1}{2}$.

- 1. Trouver les valeurs de a et b.
- 2. Étudier les limites aux bornes de *Df* .
- 3. Dresser le tableau de variations de f.

Exercice 8:

On pose : $g(x) = 2x^3 + x - 2$.

- 1. Etudier les variations de *g*.
- 2. Démontrer que l'équation g(x) = 0 admet dans \mathbb{R} une solution unique α .

Déterminer une valeur approchée de α à 10^{-2} près.

3. Etudier le signe de g(x) selon les valeurs de x. En déduire les variations de la fonction :

$$f: x \mapsto \sqrt{x^4 + (x-2)^2}$$
.

Exercice 9:

Soit la fonction définie par : $f(x) = \frac{3x+1}{x^3-3x+3}$

- 1. Montrer que l'équation $x^3 3x + 3 = 0$ admet une seule solution α sur \mathbb{R} , en donner une valeur approchée à 10^{-1} près et en déduire l'ensemble de définition Df de la fonction f.
- 2. Montrer que $f'(x) = -\frac{3(2x^3 + x^2 4)}{(x^3 3x + 3)^2}$. Montrer

que l'équation $2x^3 + x^2 - 4 = 0$ admet une seule solution β sur \mathbb{R} , en donner une valeur approchée à 10^{-1} près puis en déduire le signe de f' et les variations de f.

3. Déterminer les limites aux bornes de Df ainsi que les asymptotes à la courbe de f.

Exercice 10:

Soit f la fonction définie par $f(x) = x + \sqrt{x-1}$

- 1. Montrer que f est dérivable sur $]1;+\infty[$ puis calculer f'(x)
- 2. Montrer que f admet une fonction réciproque f^{-1} définie sur un intervalle J que l'on précisera.
- 3. Calculer f(2), montrer que f^{-1} est dérivable en 3, puis, calculer $(f^{-1})'(3)$.
- 4. Calculer $f^{-1}(x)$ en fonction de x.

M. Said CHERIF: Professeur de Mathématique au Lycée Technique Maghreb Arabe OUJDA