بسم الله الرحمان الرحيم 1) التمرين رقم 1:

KKK'D7%'A5

C=1mol/L من برادة الحديد Fe المولي المولي $(H^+ + Cl^-)$ من محلول حمض الكلوريدريك (m=2,8g) تركيزه المولي المولي (aq)

فينتج عن التفاعل الحاصل تكون أيونات الحديد H2: تا عن التفاعل المهيدروجين H2.

- 1) اكتب معادلة التفاعل الحاصل ثم حدد كمية المادة البدئية لكل من المتفاعلين .
 - 2) أنشئ جدول تقدم التفاعل وحدد المتفاعل المحد.
 - 3) أوجد كتلة الحديد المتبقية عند نهاية التفاعل.
 - 4) ما حجم غاز ثنائي الهيدروجين الناتج عن هذا التفاعل.
 - 5) حدد كتلة الحديد المتفاعلة.
- 6) ما كتلة الحديد البدئية التي كان يجب استعمالها لكي يكون الخليط ستوكيوميتريا بعطي : M(Fe)= 56g/mol

التمرین رقم <u>2</u>

نغمر صفيحة من الزنك في محلول مائي لنترات الفضة حجمه V=100mL وتركيزه C=0,1mol/L فنحصل على توضع طبقة من الفضة على الجزء المغمور من الصفيحة مع تكون أيونات الزنك Zn²⁺.

- 1) أعط نصف معادلة التفاعل الحاصل لكل من المزدوجتين Zn²⁺/Zn و Ag⁺/Ag. ثم استنتج حصيلة التفاعل.
 - 2) حدد كمية مادة الفضة البدئية.
 - 3) علما أن الزنك استعمل بوفرة ، ارسم جدول تقدم التفاعل وحدد قيمة التقدم الأقصى.
 - 4) احسب كتلة الفضة المتوضعة عند نهاية التفاعل على صفيحة الزنك.
 - 5) أوجد كتلة الزنك المتفاعلة.
 - 6) ما تركيز أيونات الزنك في المحلول المحصل عليه عند نهاية التفاعل .
 - نعطي : M(Zn)=65,4g/mol ، M(Ag)=107,9g/mol

<u>3) التمرين رقم 3:</u>

نضيف 0,28g من مسحوق برادة الحديد Fe إلى حجم V=10mL من محلول مائي لحمض الكلوريدريك تركيزه C=0,1mol/L ،

فتتكون أيونات الحديد []: +Fe2 ويتصاعد غاز ثنائي الهيدروجين H2.

- 1) ما طبيعة التفاعل الحاصل ؟
- 2) اكتب معادلته معينا النوع المؤكسد والنوع المختزل.
- 3) ارسم جدول تقدم التفاعل ثم حدد المتفاعل المحد؟
 - 4) حدد حصيلة المادة عند نهاية التفاعل .
- 5) ما حجم غاز ثنائي الهيدروجين المتصاعد في ظروف التجربة والتي هي: (20°C, 1bar)

<u>4) التمرين رقم 4:</u>

 $m V_2=50mL$ من محلول مائي $m S_1$ لبر منغنات البوتاسيوم $m (K^++MnO_4^-)$ محمض تركيزه $m V_1=30mL$ وحجما $m V_1=30mL$ من

 $.C_2$ =0,4mol/L : تركيزه (Fe $^{2+}$ +SO $_4$ 2 -) الحديد الحديد $.C_2$ =0,4mol/L الحديد الحدي

- 1) اكتب نصفى معادلتى التفاعل للمزدوجتين المتفاعلتين.
- 2) ارسم جدول تقدم التفاعل ثم حدد حصيلة التفاعل للمجموعة عند نهاية التفاعل.

<u>5) التمرين رقم 5:</u>

نضيف كتلة (C=0,2mol/L) من محلول مائي لحمض النتريك $(H^++NO_3^-)$ تركيزه V=250mL من فلز النحاس إلى حجم V=250mL

المحلول تدريجيا لونا أزرقا ويتصاعد غاز أحادي أوكسيد الأزوت NO العديم اللون.

- 1) ما الاحتياطات اللازم اتخاذها أثناء هذه التجربة ؟
 - 2) على ماذا يدل اللون الأزرق؟
 - 3) اكتب معادلة التفاعل الحاصل.

4) احسب حجم غاز NO المتصاعد . تم تحميل هذا الملف من موقع Talamidi.com

نعطى : R=8,314(S.I) ، درجة الحرارة 20°C ، الضغط P= 1bar نعطى

6) التمرين رقم 6:

. 100cm³ في محلول مائي لحمض الكلوريدريك (H⁺ (aq) + Cl⁻ (aq)) نركيزه m=400mg في محلول مائي لحمض الكلوريدريك (E= 0,5mol/L تنكيزه الحديد (g= 0,5mol/L في محلول مائي لحمض الكلوريدريك (h+ (aq) + Cl⁻ (aq)) نركيزه

- 1) اكتب نصفى المعادلتين الالكترونيتين المقرونتين بالمزدوجتين المشاركتين في التفاعل.
 - 2) أوجد المعدلة الحصيلة للتفاعل.
 - 3) احسب كمية المادة البدئية للمتفاعلين.
 - 4) ما حجم غاز ثنائي الهيدروجين الناتج عند اختفاء قطعة الحديد كليا ؟

: V_M =24L/mol , M(Fe)=56g/mol : نعطي

7) التمرين رقم 7:

المزدوجة: +MnO₄-/Mn² تشارك في التفاعل الذي يتحول خلاله الماء الأكسجيني H₂O₂ إلى غاز ثنائي الأكسجين O₂.

- 1) اكتب معادلة تفاعل الأكسدة اختزال.
- 2) هل حدث اختزال ام اكسدة الماء الأكسجيني خلال هذا التفاعل: علل جوابك.
- 3) نضيف للماء الاكسيجيني ايونات اليودور]. تلون المحلول تبين وجود ثنائي اليود 1 .
 - أ) هل الماء الاكسجيني مؤكسد أم مختزل في هذه التجربة ؟ علل جوابك.
- ب) علما أن المدوجتين المشاركتين في هذا التحول هما: ١١/١ اكتب معادلة التفاعل.

8) التمرين رهم 8:

تتفاعل كتلةm=0,56g من باردة الزنك مع محلول لحمض الكلوريدريك تركيزه m=0,56g

- 1) اعط المزدوجتين المتفاعلتين.
- 2) اكتب نصفي معادلتي الأكسدة اختزال .
 - 3) أوجد معادلة تفاعل الأكسدة اختزال.
 - 4) احسب كمية مادة الزنك البدئية.
- 5) أ) ما حجم حمض الكلوريدريك اللازم لتخفي كل برادة الزنك ؟
- $V_{M}=25L/mol$: ما حجم الغاز الناتج عن التفاعل عند نهاية التفاعل علما أن الحجم المولي
 - ج) فسر الطريقة التجريبية المعتمدة لقياس حجم الغاز المنطلق.

التصحيح

<u>1</u>) تصحيح التمرين رقم <u>1:</u>

 $Fe
ightharpoonup Fe^{2+} + 2e^{-}$: يعبر عن التحول الذي حصل لفلز الحديد بنصف المعادلة التالية : (1

 $2H^+ + 2e^- \Longrightarrow H_2$:بنصف المعادلة التالية H لأيونات H^+

 $2H^+ + Fe \to H_2 + Fe^{2+}$: وحصيلة التفاعل نحصل عليها بإضافة نصفي المعادلتين السابقتين ياسابقتين عليها بإضافة نصفي المعادلتين السابقتين المعادلتين المع

$$n_o\left(H^+\right)$$
 = $CV=1$ $\times 25.10^{-3}=2,5.10^{-2}mol$: كمية مادة H^+ البدنية $n_o\left(Fe\right)=\frac{m}{M}=\frac{2,8}{56}=5.10^{-2}mol$: كمية مادة الحديد البدنية

2) جدول تقدم التفاعل:

Ta	التقديم تد	الحالات			
$2,5.10^{-2}$	5.10^{-2}	0	0	0	. ح البدئية
$2,5.10^{-2}$ $-2x$	$5.10^{-2} - x$	х	х	х	ح التحول
$2,5.10^{-2} -2x_{\text{max}}$	$5.10^{-2} - x_{\text{max}}$	X max	x_{max}	X _{max}	ح النهائية

$$x_{\text{max}} = \frac{2,5.10^{-2}}{2} = 1,25.10^{-2} \ \text{mol}$$
 ومنه : $2,5.10^{-2} \ -2x_{\text{max}} = 0$ ومنه : H^+ : إذا افترضنا أن

$$x_{\text{max}} = 5.10^{-2} mol$$

: ومنه ج
$$\mathbf{Fe}: 5.10^{-2} - x_{\mathrm{max}} = 0$$
 ومنه جوزا افترضنا أن

ولدينا :
$$x_{\rm max}=1,25.10^{-2}mol$$
 : إذن : $1,25.10^{-2}<5.10^{-2}<$ وبالنالي فإن

$$n(Fe) = 5.10^{-2} - x_{\text{max}} = 5.10^{-2} - 1,25.10^{-2} = 3,75.10^{-2}$$
 كمية مادة الحديد المتبقية عند نهاية التفاعل. 3

$$m=M_{(Fe)} imes n_{(Fe)} = 56 imes 3,75.10^{-2} = 2,1g$$
: ومنه كتلة الحديد المتبقية عند نهاية التفاعل

$$n(H_2) = x_{\text{max}} = 1,25.10^{-2} \, mol$$
 كمية مادة غاز ثنائي الهيدروجين الناتج عن هذا التفاعل: (4

$$V_{(H_2)} = n(H_2) \times V_M = 1,25.10^{-2} \times 24 = 0,3L = 300cm^3$$
 ومنه حجم غاز ثناني الهيدروجين الناتج عن هذا التفاعل:

$$n(Fe) = x_{\text{max}} = 1,25.10^{-2} \, mol$$
 . كمية مادة الحديد المتفاعلة (5

$$m = M_{(Fe)} \times n_{(Fe)} = 56 \times 1,25.10^{-2} = 0,7g$$
 : ومنه كتلة الحديد المتفاعلة

$$m(Fe) = 2,8-2,1=0,7g$$
 أو بطريقة أخرى:

6) لتكن no كمية مادة الحديد البدئية التي كان يجب استعمالها لكي يكون الخليط ستوكيوميتريا.

2H+ +.	$Fe \rightarrow f$	H ₂ +	Fe ²⁺	لتفاعل	معادلة ا
	كميات المادة بالمول			التقدم	الحالات
2,5.10 ⁻²	n_o			0	. ح. البدئية
$2,5.10^{-2}$ $-2x$	$n_o - x$	х	х	х	ح التحول

الخليط ستوكيوميتري يعني أن المتفاعلين كلاهما محد

$$n_o = x_{\text{max}} = \frac{2,5.10^{-2}}{2} = 1,25.10^{-2} \, \text{mol}$$
 \Leftarrow $2,5.10^{-2} - 2x_{\text{max}} = 0$ \Rightarrow $n_o - x_{\text{max}} = 0$

$$n_o = x_{\text{max}} = 1,25.10^{-2} mol \iff$$

 $m=M~(Fe) imes n_o=56 imes 1,25.10^{-2}=0.7g$: إذْن كتلة الحديد البدئية التي كان يجب استعمالها لكي يكون الخليط ستوكيوميتريا

تم تحميل هذا الملف من موقع Talamidi.com

$$(Ag^{+}+e^{-} \rightleftharpoons Ag) \times 2$$

$$Zn \rightleftharpoons Zn^{2+} + 2e^{-}$$

$$(aq)$$

$$Zn + 2Ag^{+} \rightarrow 2Ag + Zn^{2+}$$

$$(aq)$$

$$(aq)$$

$$(aq)$$

$$(aq)$$

 $n_o(Ag)$ = $CV=0.1 imes100 imes10^{-3}=10^{-2}mol$: كمية مادة الفضة البدنية (2

3) جدول تقدم التفاعل:

Zn + 2Ag	معادلة التفاعل				
كميات المادة بالمول				التقدم	الحالات
n_o	0,01	0	0	0	. ح البدئية
$n_o -x$	0,01-2x	2x	x	x	ح التحول
$n_o - x_{\text{max}}$	$0.01 - 2x_{\text{max}}$	$2x_{\text{max}}$	x max	X _{max}	ح.النهائية

$$x_{\text{max}} = \frac{0.01}{2} = 5.10^{-3} \, mol$$
 : ومنه $0.01 - 2x_{\text{max}} = 0$. إذن : $0.01 - 2x_{\text{max}} = 0$. هو المحد

 $n(Ag) = 2x_{\text{max}} = 2 \times 5.10^{-3} = 10^{-2} \, mol$: نهاية التفاعل عند نهاية التفاعل : كمية مادة الفضة الناتجة عند نهاية التفاعل

$$m = M_{(Ag)} \times n_{(Ag)} = 107,9 \times 10^{-2} = 1,079 g$$
 كتلة الفضة المتوضعة: $n(Ag) = \frac{m}{M(Ag)}$

 $n(Zn) = x_{\text{max}} = 5.10^{-3} \, mol$: لدينا من خلال الجدول : كمية مادة الزنك المتفاعل عند نهاية التفاعل (5

$$m = M(Zn) \times n = 65, 4 \times 5 \times 10^{-3} = 0,327g \iff n(Zn) = \frac{m}{M(Zn)}$$
 : ونعلم أن

 $\left[Zn^{2+}\right]_f = \frac{n_f (Zn^{2+})}{V} = \frac{x_{\text{max}}}{V} = \frac{5.10^{-3}}{100 \cdot 10^{-3}} = 5.10^{-2} \, mol \, / L$ تركيز أيونات الزنك في المحلول المحصل عليه عند نهاية التفاعل: (6

3) تصحيح التمرين رقم 3:

1) تفاعل الأكسدة اختزال.

. وهو تفاعل أكسدة
$$Fe
ightharpoonup Fe^{2+} + 2e^{-}$$
 (2

وهو تفاعل اختزاا
$$2H^+ + 2e^- \mathop{\Longleftrightarrow} H_2$$

$$Fe$$
 : المؤكسد هو H^+ والمختزل هو $2H^+ + Fe o H_2 + Fe^{2+}$

Talamidi.com كميه مادة الحديد البدئية $5.10^{-3} mol : \frac{0.28}{M} = 5.10^{-3} mol$ كميه مادة الحديد البدئية (3

$$n_o(H^+) = CV = 0.1 \times 10.10^{-3} = 10^{-3} mol$$
 کمیة مادة H^+ کمیة مادة البدنیة :

2) جدول تقدم التفاعل:

2H+ +.	$Fe \rightarrow f$	H ₂ +	Fe 2+	تفاعل	معادلة اأ
	كميات المادة بالمول			التقدم	الحالات
5.10^{-3}	10^{-3}	0	0	0	. ح البدئية
$5.10^{-3} -2x$	$10^{-3} - x$	Х	X	х	ح التحول
$5.10^{-3} -2x_{\text{max}}$	$10^{-3} - x_{\text{max}}$	x max	x max	X _{max}	ح النهائية

$$x_{\text{max}} = \frac{5.10^{-3}}{2} = 5.10^{-4} \, mol$$
 ومنه : $5.10^{-3} - 2x_{\text{max}} = 0$ ومنه : H^+ فترضنا أن : H^+

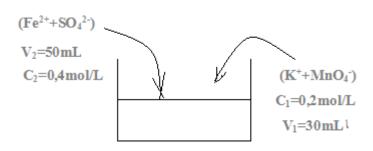
$$x_{\text{max}} = 10^{-3} mol$$

: ومنه
$${
m Fe}$$
 ومنه والمتفاعل المحد والمتفاعل المحد ومنه ومنه المحد إذا افترضنا أن

ولدينا : $x_{\rm max} = 5.10^{-4} mol$: إذن : $5.10^{-4} < 10^{-3}$ وبالتالي فإن

- martist and

4) حصيلة المادة:


2H+	+. <i>Fe</i> -	→ H ₂	+ Fe ²⁺	معادلة التفاعل
0	4,5.10 ⁻³ mol	$5.10^{-4} mol$	5.10^{-4} mol	ح.النهانية

 $n_f\left(H_2
ight)$ =5. $10^{-4}mol$: الناتج عند نهاية التفاعل الناتج عند نهاية التفاعل (H_2

$$V_{(H_2)} = \frac{n_{(H_2)}.RT}{P} = \frac{5.10^{-4} \times 8,314 \times 293}{10^5} = 12,18.10^{-6} \, m^3 = 12,18 mL : 0.00 \, PV_{(H_2)} = n_{(H_2)}.RT$$

<u>4) تصحيح التمرين رقم 4</u>

1) أيونات البوتاسيوم وايونات الكبريتات لا تتدخل في التفاعل وتفاعل الأكسدة اختزال يتم بين ايونات البرمنغنات وايونات الحديد.

$$MnO_4^- + 8H^+ + 5e^- \iff Mn^{2+} + 4H_2O$$

$$(Fe^{2+} \iff Fe^{3+} + 3e^-) \times 5$$

$$MnO_4^- + 8H^+ + 5Fe^{2+} \longrightarrow Mn^{2+} + 5Fe^{3+} + 4H_2O$$

$$(aq) \qquad (aq) \qquad (aq) \qquad (de) \qquad (de)$$

Talamidi.com تم تحقيل هذا المائد من موقع
$$n_o(MnO_4^-)=C_1 V_1=0,2 imes 30.10^{-3}=6.10^{-3} mol$$
 البدنية : $n_o(MnO_4^-)=C_1 V_1=0,2 imes 30.10^{-3}=6.10^{-3} mol$ كمية مادة ${\sf Fe}^{2+}=C_2 V_2=0,4 imes 50.10^{-3}=0,02 mol$ كمية مادة ${\sf Fe}^{2+}=0.02 mol$

جدول تقدم التفاعل:

MnO ₄ +	اعل	معادلة التف					
		بات المادة بالمول	کمپ			التقدم	الحالات
6.10^{-3}	بوفرة	0,02	0	0	بوفرة	0	. ح.البدئية
$6.10^{-3} -x$	بوفرة	0,02-5x	х	5 <i>x</i>	بوفرة	х	ح التحول
$6.10^{-3} -x_{\text{max}}$	بوفرة	$0,02-5x_{\text{max}}$	X max	$5x_{\text{max}}$	بوفرة	X _{max}	ح النهائية

 $x_{
m max}=6.10^{-3} \, mol$. ومنه $6.10^{-3} \, -x_{
m max}=0$. ومنه ${
m MnO_4}^{-1}$

$$x_{\text{max}} = \frac{0.02}{5} = 4.10^{-3} mol$$

: ومنه جو المتفاعل المحد
$$x_{\rm max}=0$$
 ومنه جو المتفاعل المحد جو آبد افترضنا أن

ولدينا : $4.10^{-3} < 6.10^{-3}$ وبالتالي فإن : $4.10^{-3} < 6.10^{-3}$ هو المحد.

حصيلة التفاعل للمجموعة عند نهاية التفاعل:

$MnO_4^- + 81$	H* + 5Fe ²⁺	$Mn^{2+} + 5Fe^{3+}$	+ 4H ₂ O	معادلة التفاعل
2.10 ⁻³	() بوفرة	4.10^{-3} 2.10^{-3}	بوفرة 2-	ح.اننهانية

 $n(K^+) = C_1 \overline{V_1} = 6.10^{-3} mol$:

$$n(SO_4^{2-}) = C_2V_2 = 0.02mol$$
 :

5) تصحيح التمرين رقم 5:

- 1) في هذه التجربة يجب تفادي استنشاق غاز أحادي أوكسيد الأزوت الخانق المتصاعد.
 - Cu^{2+} يدل اللون الأزرق على تكون أيونات النحاس (2

$$(NO_3^- + 4H^+ + 3e^- \rightleftharpoons NO + 2H_2O) \times 2$$

$$(Cu \rightleftharpoons Cu^{2+} + 2e^-) \times 3$$

$$2NO_3^- + 3Cu + 8H^+ \rightleftharpoons 2NO + 3Cu^{2+} + 4H_2$$
(3)

$$n = \frac{m}{M} = \frac{2{,}12}{63{,}5} \approx 33{,}4.10^{-3} mol$$
 : كمية مادة النحاس البدنية (4

 $n_o(NO_3^-) = CV = 0.2 \times 250.10^{-3} = 5.10^{-2} mol$ البدئية: NO₃-3 مادة NO₃-3 البدئية

لنرسم جدول تقدم التفاعل:

$$2NO_3^- + 3Cu + 8H^+ \rightleftharpoons 2NO_1 + 3Cu^{2+} + 4H_2O_1$$

	التقدم	الحالات					
تم تحميل هذا الملف من موقع Talamidi.com تم تحميل هذا الملف من موقع 5.10 ⁻²						0	. ح.البدئية
$5.10^{-2} -2x$	$33,4.10^{-3}-3x$	•••	2x	3 <i>x</i>	بوفرة	х	ح.التحول
$5.10^{-2} -2x_{\text{max}}$	$33,4.10^{-3} - 3x_{\text{max}}$	•••	2x _{max}	$3x_{\text{max}}$	بوفرة	X _{max}	ح النهائية

 $x_{\text{max}}=2.5.10^{-2}$ افترضنا أن NO₃ محد: $-2x_{\text{max}}=0.2x_{\text{max}}$

رد افترضنا أن محد: 33.4.10-33x_{max} أي: x_{max}=11,13.10-3 mol إذا افترضنا أن محد: 33.4.10-3 محد: 33.4.10-3 أي المحد

 $n_f\left(NO\right)=2.x_{\max}=2\times11,13=22,26m.mol$: التفاعل عند نهاية التفاعل المادة عند نهاية التفاعل: حصيلة المادة عند نهاية التفاعل:

$2NO_3^- + 30$	Cu + .	8H ⁺	∠NO	$+ 3Cu^{2+} +$	4H ₂ O	معادلة التفاعل
27,74m.mol	0		22m.mol	33,4m.mol	بوفرة	ح.اننهائية

$$V_{(NO)} = \frac{n_{(NO)}.RT}{P} = \frac{22.10^{-3} \times 8,314 \times 293}{10^{5}} = 535,9.10^{-6}m^{3} = 535,9mL$$
 ومنه: $PV_{(NO)} = n_{(NO)}.RT$ ومنه:

6) تصحيح التمرين رقم 6:

$$Fe \rightleftharpoons Fe^{2+} + 2e^{-}$$
 et $2H^{+} + 2e^{-} \rightleftharpoons H_{2}$ (1

$$Fe \rightleftharpoons Fe^{2+} + 2e^{-}$$

$$2H^{+} + 2e^{-} \rightleftharpoons H_{2}$$

$$2H^{+} + Fe \rightarrow H_{2} + Fe^{2+}$$

$$(aq) \qquad (g) \qquad (aq)$$

(4

$$n_i(H^+) = CV = 0.5 \times 100.10^{-3} = 5.10^{-2} mol$$
 (3)

$$n_i(Fe) = \frac{m}{M} = \frac{400.10^{-3}}{56} \approx 0,714.10^{-2} mol$$

2H+ +.	تفاعل	معادلة ال			
	كميات المادة بالمول			التقدم	الحالات
5.10 ⁻²	$0,714.10^{-2}$	0	0	0	. ح.البدئية
$5.10^{-2} -2x$	$0,714.10^{-2} - x$	Х	х	х	ح التحول
$5.10^{-2} -2x_{\text{max}}$	$0,714.10^{-2} - x_{\text{max}}$	$x_{\rm max}$	X max	X _{max}	ح النهائية

 $x_{\text{max}} = \frac{5.10^{-2}}{2} = 2,5.10^{-2} \, mol$ ومنه : $5.10^{-2} - 2x_{\text{max}} = 0$ ومنه : H^+ : إذا افترضنا أن

 $x_{\max}=0,714.10^{-2} mol$ Talamidi.com: ولا الفترضنا أن $T_{\max}=0,714.10^{-2}$ المحد $T_{\max}=0,714.10^{-2}$ هو المحد $T_{\max}=0,714.10^{-2}$ هو المحد ولا الفترضنا أن $T_{\max}=0,714.10^{-2}$ هو المحد $T_{\max}=0,714.10^{-2}$ هذا التفاعل: $T_{\max}=0,714.10^{-2}$ هذا التفاعل: $T_{\max}=0,7.10^{-2}$ التفاعل: T

7) تصحيح التمرين رقم 7:

2) H₂O₂ تأكسد لان الأكسدة هي فقدان الالكترونات.

نا الكترونات.
$$2I^- \rightleftharpoons I_2 + 2e^-$$
 نقاعل أكسدة = فقدان الألكترونات.

$$2I^{-} \rightleftharpoons I_{2} + 2e^{-}$$
 $H_{2}O_{2} + 2H^{+} + 2e^{-} \rightleftharpoons 2H_{2}O$
....
 $H_{2}O_{2} + 2I^{-} + 2H^{+} \rightleftharpoons 2H_{2}O + I_{2}$
(\hookrightarrow

8) تصحيح التمرين رقم 8:

$$Zn^{2+}_{(aq)}/Zn_{(s)}$$
 : $H^{+}_{(aq)}/H_{2(g)}$ (1

$$Zn \rightleftharpoons Zn^{2+} + 2e^-$$
 (2)

$$2H^+ + 2e^- \rightleftharpoons H_2$$

$$2H^{+}_{(aq)} + Zn \to H_{2} + Zn \atop (g) \qquad (3)$$

(4

 $n_o(H^+) = CV$

$$n_i(Zn) = \frac{m}{M} = \frac{0.56}{56} = 10^{-2} mol$$

5) أ) جدول تقدم التفاعل:

Equation de la réaction		$2H^{+} +$	$Zn \rightarrow H_2$	+	Zn
états	avancement Quantité de matière (en mol)				
Etat initial	0	CV	10 ⁻²	0	0
Etat de	x	CV-2x	10 ⁻²	х	х

transformation	Talamid	ل ف من موقع i.com	تم تحميل هذا الم		
Etat final	X _{max}	$CV - 2x_{\text{max}}$	10^{-2} - x_{max}	X max	$x_{\rm max}$

 $x_{\text{max}} = 10^{-2} \text{mol} \iff 10^{-2} - x_{\text{max}} = 0$ الزنك يختفي كليا ، أذن هو المحد

$$C\,V=2x_{
m max}~~ \leftarrow ~~C\,V~-2x_{
m max}=0$$
 حجم حمض الكلوريدريك اللازم لتخفي كل برادة الزنك يوافق

$$V = \frac{2x_{\text{max}}}{C} = \frac{2.10^{-2}}{5} = 4.10^{-3}L = 4mL$$

KKK'D7%'A5

ذ.عبد الكريم اسبيرو