تم تحميل هذا الملف من موقع Talamidi.com

تمارين درس المعايرات المباشرة

تمرين 1: نحضر محلول مائى (S_1) بإذابة كتلة m من كبريتات الحديد II في نصف لتر من الماء الخالص .

نأخذ V_1 =40mL من المحلول (S_1) مع بعض قطرات من حمض الكبريتيك ثم نضيف إليه تدريجيا محلول مائي (S_2) لثنائي كرومات البوتاسيوم التي تختزل إلى المميز لأيونات $C_2 = 5.10^{-2} \mathrm{mol.L^{-1}}$ الذي يتميز باللون البرتقالي المميز لأيونات $(2K^+ + C_2 O_{7(qa)}^{2-})$

أيونات الكروم $Cr_{(aq)}^{3+}$. و عند صب $14 ext{mL}$ من المحلول (S_2) ينتهي اختفاء اللون البرتقالي .

1.ارسم التركيب التجريبي المستعمل لإنجاز هذه المعايرة, محددا أسماء الأدوات المستعملة و مشيرا إلى المتفاعل المعاير و المتفاعل المعاير.

2. أكتب معادلة تفاعل هذه المعايرة . و ما نوع هذا التفاعل ؟ و حدد المز دوجتين المتفاعلتين .

و
$$M(S) = 32.1g.mol^{-1}$$
 و $M(O) = 16g.mol^{-1}$

كيف يمكنك معرفة حدوث حالة التكافؤ أثناء هذه المعايرة؟

$$M(Fe) = 55.8g.mol^{-1}$$

4. أنشئ الجدول الوصفى لتطور التفاعل و أثبت علاقة التكافؤ لهذه المعايرة .

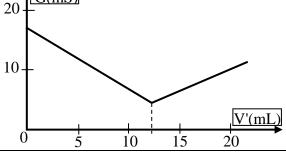
. m قيمة C_1 التركيز المولى للمحلول (S_1) و حدد قيمة

من المحلولS بواسطة محلول الصودا تركيزه المولي c'=9,6.10⁻²mol.L⁻¹, و ذلك بقياس مواصلة الخليط بعد كل إضافة. فنحصل على المنحنى التالي : G(mS)

1. حدد المتفاعل المعاير و المتفاعل المعاير.

أكتب معادلة تفاعل هذه المعايرة . و ما نوع هذا التفاعل ؟

3. ما المزدوجتان المتفاعلتان ؟


4. علل كيفيا تطور المواصلة.

كيف يمكنك معرفة حدوث حالة التكافؤ أثناء هذه المعايرة ؟

6. ما طبيعة الخليط عند التكافؤ.

7. أنشئ الجدول الوصفى لتطور التفاعل و أثبت علاقة التكافؤ لهذه المعايرة .

 C_0 احسب التركيز C للمحلول C , و استنتج التركيز C

تمرين 4: نحضر محلول مائي (S_1) بإذابة كتلة m=36g من ثنائي كرومات البوتاسيوم $(2K^++Cr_2O_{7(qq)}^{2-})$ في لترين من الماء الخالص نأخذ محلول مائي (S_1) محمض و نعاير به V_2 =10mL من المحلول (S_2) للماء الأوكسيجيني محمض و نعاير به V_1 =25mL من المحلول مائي (S_1) من المحلول مائي (S_1) من المحلول مائي (S_2) من المحلول من المحلول (S_2) من المحلول مائي (S_2) من المحلول من المحلول (S_2) من المحلول مائي (S_2) من المحلول مائي (S_2) من المحلول من المحلول (S_2) من المحلول مائي (S_2) من المحلول من المحلول (S_2) من المح المحلول (S_1) ينتهي اختفاء اللون البرتقالي .

1. ارسم التركيب التجريبي المستعمل لإنجاز هذه المعايرة, محددا أسماء الأدوات المستعملة و مشيرا إلى المتفاعل المعاير و المتفاعل المعاير.

 $Cr_2O_7^{2-}{}_{(aa)}/Cr^{3+}{}_{(aq)}$ و $O_{2(aa)}/H_2O_{2(aa)}$: خلال هذه المعايرة يحدث تفاعل كيميائي تتدخل فيه المزدوجتان $O_{2(aa)}/H_2O_{2(aa)}$

أكتب نصف معادلة أكسدة و اختزال المقرونة بكل مزدوجة, و استنتج معادلة تفاعل المعايرة.

3. كيف يمكنك معرفة حدوث حالة التكافؤ أثناء هذه المعايرة ؟ 4. احسب C_1 التركيز المولي للمحلول (S_1).

5. أنشئ الجدول الوصفي لتطور التفاعل و أثبت علاقة التكافؤ لهذه المعايرة . $M(K_2CrO_7) = 242.2g.mol^{-1}$: نعطي 6. استنتج \mathbb{C}_2 التركيز المولي للمحلول (\mathbb{S}_2).

 $V_1 = 20cm^3$ تمرین 5: لمعایرة محلول مائي (S_1) لثنائي کرومات البوتاسيوم $(2K^+ + Cr_2O_{7(aa)}^{2-})$ ترکیزه (S_1) مجهول و محمض, نضع حجما من هذا المحلول في كاس, ثم نضيف إليه حجما $V_2 = 50cm^3$ من محلول مائي (S_2) لكبريتات الحديد S_2 بعد نهاية المحلول في كاس, ثم نضيف إليه حجما ألى محلول مائي (S_2) من محلول مائي ألى بعد نهاية المحلول في كاس التفاعل نعاير أيونات الحديد II المتبقية, و ذلك باستعمال محلول مائى (S_3) لبر منغنات البوتاسيوم, تركيزه $C_3 = 2.10^{-2} \, mol. L^{-1}$, و محمض . (S₃) من المحلول على التكافؤ وجب صب $V_3=28cm^3$ من المحلول (S₃) .

1. أكتب المعادلة الحصيلة لكل من التفاعلين الحاصلين.

2. حدد تعبير C_1 , ثم احسب قيمته.

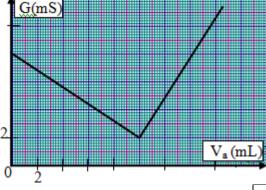
تمرين 6: نعاير حجما $V_b=10m$ من محلول مائي لهيدروكسيد الصوديوم تركيزه المولي ر C_b بواسطة محلول مائي لحمض الكلوريدريك تركيزه C_{s} , و ذلك بقياس مواصلة الخليط بعد كل إضافة و ذلك باستعمال مقياس للمواصلة ثابتة خليته $k=10^{-2}m^{-1}$. فنحصل على المنحنى التالى:

1. حدد المتفاعل المعاير و المتفاعل المعاير.

2. أكتب معادلة تفاعل هذه المعايرة . و ما نوع هذا التفاعل ؟

3. ما المزدوجتان المتفاعلتان ؟

4. علل كيفيا تطور المواصلة.


5. كيف يمكنك معرفة حدوث حالة التكافؤ أثناء هذه المعايرة ؟

6. ما طبيعة الخليط عند التكافؤ.

7. أنشئ الجدول الوصفي لتطور التفاعل و أثبت علاقة التكافؤ لهذه المعايرة .

 C_a قيمة و استنتج قيمة . و استنتج قيمة 8. باعتمادك المنحنى, حدد قيمة

9. أجرد أنواع الأيونات المتواجدة في الخليط عند التكافؤ. و احسب تراكيزها.

$C\ell^-$	H_3O^+	HO^-	Na ⁺	الأيون
7,63	35	19,9	5,01	$\lambda(mS.m^2.mol^{-1})$