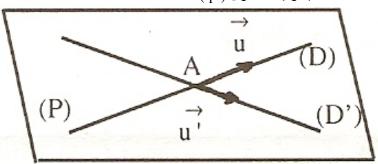
## تم تحميل هذا الملف من موقع Talamidi.com

$$\begin{cases} -1 + 2t = 6 - 3t' \\ -2 + 3t = 3 + t' & \text{: indicates the proof of the proof of$$

$$\begin{cases} 2t+3t^{'}=7 \ 3t-t^{'}=5 \end{cases}$$
 هذه النظمة تكافئ :  $t-2t^{'}=0$ 


$$\left(2.1\right)$$
 هو  $\begin{cases} 2t + 3t' = 7 \\ t - 2t' = 0 \end{cases}$  هو

3t - t' = 5 وبما أن الزوج (2.1) حل للمعادلة

t'=1 و t=2

وبالتالي فإن مثلوث إحداثيات A نقطة تقاطع المستقيمين (D') و (D') هو (D,4,1) (حصلنا على هذا المثلوث بتعويض t بالقيمة D في التمثيل البار امتري للمستقيم D أو بتعويض D بالقيمة D في التمثيل البار امتري للمستقيم D (D)

## (p) معادلة ديكارتية للمستوى (p)



المستوى ( p ) محدد بالنقطة ( 3,4,1) و بالمتجهتين ( 2,3,-1) و بالمتجهتين (  $\vec{u}$  ( 2,3,-1) و بالمتجهتين (  $\vec{u}$  (  $\vec{u}$  (  $\vec{u}$  ) ) لتكن (  $\vec{u}$  (  $\vec{u}$  ) لتكن (  $\vec{u}$  (  $\vec{u}$  ) لتكن (  $\vec{u}$  ) لتك

$$M \in (P) \Leftrightarrow \det(\overrightarrow{AM}, \overrightarrow{u}, \overrightarrow{u'}) = 0$$
 دينا : لدينا

$$\Leftrightarrow \begin{vmatrix} x-3 & 2 & -3 \\ y-4 & 3 & 1 \\ z-1 & -1 & -2 \end{vmatrix} = 0$$

$$\Leftrightarrow (x-3) \cdot \begin{vmatrix} 3 & 1 \\ -1 & -2 \end{vmatrix} - (y-4) \cdot \begin{vmatrix} 2 & -3 \\ -1 & -2 \end{vmatrix} + (z-1) - \begin{vmatrix} 2 & -3 \\ 3 & 1 \end{vmatrix} = 0$$
  
$$\Leftrightarrow -5(x-3) + 7(y-4) + 11(z-1) = 0$$

$$\Leftrightarrow -5x + 7y + 11z - 24 = 0$$

## تم تحميل هذا الملف من موقع Talamidi.com

$$\Leftrightarrow 5x-7y-11z+24=0$$

$$(p) هي بالفعل : 5x-7y-11z+24=0$$

$$(\Delta) paradian (paradian parabidal parabida$$