Exercices de logique

Exercice 1 Ecrire les contraposées des implications suivantes et les démontrer. n est un entier naturel, x et y sont des nombres réels.

- 1. $n \text{ premier} \Rightarrow n = 2 \text{ ou } n \text{ est impair}$,
- 2. $xy \neq 0 \Rightarrow x \neq 0 \text{ et } y \neq 0$,
- 3. $x \neq y \Rightarrow (x+1)(y-1) \neq (x-1)(y+1)$.

Exercice 2 Ecrire les réponses aux questions suivantes, portant sur des entiers naturels, sous la forme d'assertions mathématiques (écrites avec les symboles " \forall ", "et", "ou", " \Rightarrow ", " \Leftrightarrow ") et les prouver.

- 1. Le produit de deux nombres pairs est-il pair?
- 2. Le produit de deux nombres impairs est-il impair?
- 3. Le produit d'un nombre pair et d'un nombre impair est-il pair ou impair?
- 4. Un nombre entier est-il pair si et seulement si son carré est pair?

Exercice 3 Soient les quatre assertions suivantes :

- 1. $\exists x \in \mathbb{R}, \forall y \in \mathbb{R}, x + y > 0$,
- 2. $\forall x \in \mathbb{R}, \exists y \in \mathbb{R}, x + y > 0$,
- 3. $\exists x \in \mathbb{R}, \forall y \in \mathbb{R}, y^2 > x$.
- 4. $\forall \varepsilon \in \mathbb{R}^{+*}, \exists \alpha \in \mathbb{R}^{+*}, |x| < \alpha \Rightarrow |x^2| < \varepsilon$

Les assertions 1, 2, 3 et 4 sont elles vraies ou fausses? Donner leurs négations.

Exercice 4 1. Soit $n \ge 2$ un entier. Montrer par l'absurde que, si n n'est pas premier, il admet un diviseur premier p qui est inférieur ou égal à \sqrt{n} .

2. A l'aide de ce critère, déterminer si les nombres 89, 167 et 191 sont premiers.

Exercice 5 Montrer que $\sqrt{89}$ est irrationnel.

Exercice 6 Soit $n \in \mathbb{N}$. Montrer que soit 4 divise n^2 , soit 4 divise $n^2 - 1$.

Exercice 7 * Démontrer que pour tout $n \in \mathbb{N}$:

- 1. $n^3 n$ est divisible par 6,
- 2. $n^5 n$ est divisible par 30,
- 3. $n^7 n$ est divisible par 42.

Indication : Pour 1, on peut factoriser $n^3 - n$ pour voir que ce nombre est multiple de 2 et de 3. Les cas 2 et 3 peuvent se traiter de façon analogue.

A.AFAADAS a.afaadas@gmail.com

Exercice 8 Démontrer par récurrence que :

$$\forall n \in \mathbb{N} - \{0, 1, 2, 3\}, \quad n^2 \leqslant 2^n.$$

Exercice 9 Pour $n \in \mathbb{N}$, on définit deux propriétés :

$$P_n: 3 \text{ divise } 4^n - 1 \text{ et } Q_n: 3 \text{ divise } 4^n + 1.$$

- 1. Prouver que pour tout $n \in \mathbb{N}, P_n \Rightarrow P_{n+1}$ et $Q_n \Rightarrow Q_{n+1}$.
- 2. Montrer que P_n est vraie pour tout $n\in\mathbb{N}$.
- 3. Que penser, alors, de l'assertion : $\exists n_0 \in \mathbb{N}, \forall n \in \mathbb{N}, n \geqslant n_0 \Rightarrow Q_n$?

A.AFAADAS a.afaadas@gmail.com