تم تحمیل هذا الملف من موقع Talamidi.com

	ņișșe.		
		: 2012	- 2013
Vom	& prénon	١:	- · · · · · · · · · · · · · · · · · · ·

Evaluation N° 1
1^{er} Semestre

Matière : Informatique

Niveau: 1BAC ECO Le: 27/11/2012

Durée : 1h00

Prof : A.CHATTAHY

Exercice n°: 1					(5Pts)	
Cochez la case convenable: L'alphabet du système binaire est	•	□0 à 1	□ 0 à 7	□ 0 à 9	□0 et 1	
L'alphabet du système décimal est		□ 0 à 10	□0 à 7	□0 à 9	□0 et 9	
L'alphabet du système octal est	•	Q 0 à 7	□0 à 8	□0 à 9	□0 et 8	
1 caractère égal	•	☐ 8 bits	☐ 16 bits	32 bits	☐ 64 bits	
DWORD égal	•	3 bits	☐ 16 bits	☐ 32 bits	☐ 64 bits	
Exercice n°: 2					(3Pts)	
1) Convertir les nombres suivants vers le	système	demandé :	$312_{(4)}=N_{(10)}$	et 157 ₍	₁₀₎ =N ₍₆₎	
	•					
312 ₍₄₎ =(10)		157 ₍₁₀₎ = .		•••(6)		
				·		
Exercice n°3. Effectuer les opérations suivantes :	<u>. </u>				<u>(6Pts)</u>	
	4 0 0 0					
+	1 1 0 0 0 1 1 1 ₍₂₎			$_{+}$ 1 1 1 1 1 1 $_{(2)}$		
$10101100_{(2)}$	10011001(2)			$10001100_{(2)}$		
	•••••	* * * * * * * * * * * * * * * * * * * *	••	• • • • • • • • • • • • • • • • • • • •	••••••	
11001(2)	0000	$000_{(2)}$		111111	1(2)	
—		0001(2)		00000		
	••••••	•••••	*****			

$101011011_{(2)} = N_{(16)}$					
	1101011011 (2)=(16)				
xercice n°5.	(4Pts)				
onvertir les nombres suivants :					
a) -197 ₍₁₀₎ = ₍₂₎ =	(8)				
<u>La méthode</u> :					
***************************************	* * * * * * * * * * * * * * * * * * * *				
***************************************	••••••••••••••				
	• • • • • • • • • • • • • • • • • • • •				

	•••••••••••				
***************************************	* * * * * * * * * * * * * * * * * * * *				
•••••••••••••••••••••••••••••••	••••••••••••				
••••••••••••••••••••••••••••••••	· · · · · · · · · · · · · · · · · · ·				
••••••••••••••••••••••••••••••	• • • • • • • • • • • • • • • • • • • •				
	•••••••••••••				
b) 11111110001111010011 ₍₂₎ =	······(8)= ·····(16)				
<u>.a méthode</u> :					

	••••••••••••••••				
***************************************	••••••••••••••••				
***************************************	••••••••••••••••				
***************************************	••••••••••••••				
••••••••••••					