



#### ، تَعْمَيْلُ هَذَّا الْمِلْقُ مِنْ مَوْقِهِ ww.talamidi.com/ **Série N°\_01\_le poids et la masse**

said Boujnane

#### www.pc1.ma

### Exercice 01 La masse d'une pierre sur la Terre vaut 500g.

Calculer le poids de la pierre sur la Terre et sur la lune.

Intensité de la pesanteur (Terre):  $g_T = 9.81 \text{ N/kg}$ 

Intensité de la pesanteur (Lune):  $g_L = 1,62 \text{ N/kg}$ 

# **Exercice 02** Sur la Lune le poids d'une pierre vaut 15 N.

- 1) Calculer la masse de la pierre.
- 2) Calculer son poids sur Terre. Intensité de la pesanteur (Terre): g<sub>T</sub> = 9,81 N/kg Intensité de la pesanteur (Lune): g<sub>L</sub> = 1,62 N/kg

# **E<sup>xercice 03</sup>** Répondez par vrai ou faux :

- 1) Un solide au repos est en équilibre
- 2) La masse d'un corps dépend de l'altitude
- 3) Nous mesurons l'intensité du poids d'un corps à l'aide d'une balance.
- 4) L'intensité du poids d'un corps varie avec le lieu et l'altitude.
- 5) Nous exprimons l'intensité du poids d'un corps par la relation  $P = \frac{m}{g}$

## Exercice 04 Cocher la bonne réponse :

| Avec l'altitude l'1    | ntensité du poids d'un obje  | et:                                   |
|------------------------|------------------------------|---------------------------------------|
| Augmente               | ne varie pas                 | diminue diminue                       |
| ❖ La relation entre l  | a masse m d'un corps et so   | on poids $\overrightarrow{\pmb{P}}$ : |
|                        |                              | $\square P = \frac{g}{m}$             |
| ❖ L'unité internation  | nale de l'intensité d'une fo | rce est:                              |
| $\square$ N/K $\sigma$ | $\square$ N <sup>-1</sup>    | $\square$ N                           |

**Exercice 05** Hier soir j'ai fait un rêve. J'étais sur une autre planète et j'ai réalisé l'expérience suivante : j'ai mesuré le poids d'un paquet de bonbons de masse 200g. Le dynamomètre m'a indiqué 1,8N.

Sur quelle planète étais-je dans mon rêve. On donne :

| Planète      | Terre                     | Saturne                        | Jupiter                        | Mars                               | Lune                          | Mercure                           |
|--------------|---------------------------|--------------------------------|--------------------------------|------------------------------------|-------------------------------|-----------------------------------|
|              | الارض                     | زحل                            | المشتري                        | المريخ                             | القمر                         | عطارد                             |
| intensité de | $g_T = 9,81$ N. $Kg^{-1}$ | $g_s = 9,05 \text{ N.Kg}^{-1}$ | $g_j = 22,9 \text{ N.Kg}^{-1}$ | $g_{\rm M} = 3,72 {\rm N.Kg^{-1}}$ | $g_L = 1,6 \text{ N.Kg}^{-1}$ | $g_{\rm M} = 2.9 \ \rm N.Kg^{-1}$ |
| la pesanteur |                           |                                |                                |                                    |                               |                                   |

### Exercice 06

La masse d'un corps (A) sur la surface de la Terre est 82Kg, sachant que l'intensité de pesanteur à la surface de la Terre est  $g_T = 10N/Kg$ .

- 1- Donner la relation entre la masse et le poids du corps.
- 2- Calculer l'intensité du poids du corps (A) sur la surface de la Terre.
- 3- Calculer l'intensité du poids du corps (A) sur la lune sachant que  $g_L$ = 1,63N/Kg.