

## تصحيح الامتحان الجهوي الموحد لنيل شهادة السلك الإعدادي جهة الرباط سلا القنيطرة

المعامل : 1 مدة الإنجاز : ساعة واحدة

دورة: يونيو 2021 المادة: الفيزياء و الكيمياء الممكة العفرية المحات المعربية المحات المحا

www.pc1.ma

www.pc1.ma/forum

| Examen corrigé par : Prof.Brahim Tahiri & Prof.Said Boujnane                                                                                                       |        |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--|--|--|--|
| Sujet B                                                                                                                                                            | Barème |  |  |  |  |
| Exercice 1: (8 pts) www.pc1.ma                                                                                                                                     |        |  |  |  |  |
| 1. Complète les phrases ci-dessous par les mots de la liste suivante :                                                                                             |        |  |  |  |  |
| distance – mouvement – retardé –contact – référence – force                                                                                                        |        |  |  |  |  |
| a) L'état de repos ou l'état de mouvementd'un corps se détermine par rapport à un                                                                                  |        |  |  |  |  |
| autre corps appelé le corps de référence                                                                                                                           | 3      |  |  |  |  |
| b) La nature du mouvement lors de freinage d'un mobile est un mouvement retardé                                                                                    |        |  |  |  |  |
| c) L'action mécanique est modélisée par une grandeur physique appelée la force                                                                                     |        |  |  |  |  |
| d) On distingue deux types d'action mécanique : action à distanceet action de contact  2. Met une croix (X) dans la case qui correspond à la proposition correcte. |        |  |  |  |  |
| a) On peut calculer la durée « t » du parcours en fonction de la vitesse « V » et la distance                                                                      |        |  |  |  |  |
| « d » par l'expression suivante :                                                                                                                                  |        |  |  |  |  |
| $\Box + \Box V \stackrel{\frown}{\Box} + \Box d$                                                                                                                   | 0,75   |  |  |  |  |
| b) La loi d'Ohm s'exprime par la relation suivante : <u>www.pc1.ma</u>                                                                                             | 0.55   |  |  |  |  |
| $\square  U = \frac{R}{I} \qquad \qquad \square  U = \frac{I}{R} \qquad \qquad \square$                                                                            | 0,75   |  |  |  |  |
| c) L'unité de la résistance électrique est :                                                                                                                       |        |  |  |  |  |
| □ L'Ampère □ Le Volt ☑ L'Ohm □                                                                                                                                     | 0,75   |  |  |  |  |
| d) L'intensité du poids d'un corps s'exprime par la relation :                                                                                                     |        |  |  |  |  |
| $\square P = \frac{m}{g} \qquad \square P = \frac{g}{m} \qquad \square P = m \cdot g$                                                                              | 0,75   |  |  |  |  |
| 3. Réponds par « Vrai » ou « Faux » aux propositions suivantes :                                                                                                   |        |  |  |  |  |
|                                                                                                                                                                    | 0,5    |  |  |  |  |
| centre de gravité du receveur.                                                                                                                                     | 0.5    |  |  |  |  |
| b) La déformation d'un corps résulte d'une action mécanique.                                                                                                       | 0,5    |  |  |  |  |

## Exercice 2: (8pts) www.pc1.ma

Le poids d'un corps est une force dirigée selon la verticale du lieu vers le haut.

La caractéristique d'un conducteur ohmique est une droite passante par l'origine du

## Partie 1:

repère.

c)

d)

La figure ci-contre représente une balle de masse 0,3~kg se reposant en équilibre sur le nez d'une otarie (أسد البحر).

On donne l'intensité de la pesanteur  $g = 10 \text{ N.kg}^{-1}$ 

- 1) Détermine les forces exercées sur la balle en les classant en forces à distance et forces de contact. www.pc1.ma
- $\overrightarrow{P}$ : le poids de la balle : force à distance.



**Faux** 

Vrai

1

0,5

0,5

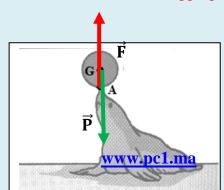
2) Détermine l'intensité du poids  $\vec{P}$  de la balle.

On a : **P= m.g** 

avec m = 0.3 kg et g = 10 N/kg

A.N:  $P = 0.3 \text{ kg x} 10 \text{ N/kg} \Rightarrow P = 3\text{N}$ 

3) En appliquant la condition d'équilibre, déduis les caractéristiques de la force  $\vec{\mathbf{F}}$  exercée par le nez de l'otarie sur la balle. Justifie ta réponse.


| Caractéristiques<br>Force | Point d'application | Droite d'action          | Sens              | Intensité                               |
|---------------------------|---------------------|--------------------------|-------------------|-----------------------------------------|
| F                         | A                   | La droite verticale (AG) | De A vers la haut | $\mathbf{F} = \mathbf{P} = 3\mathbf{N}$ |

Justification de la réponse : La balle est en équilibre sous l'action de deux forces, alors en appliquant

la condition d'équilibre, on déduit que les deux forces

 $\vec{F}$  et  $\vec{P}$  ont la même droite d'action, la même intensité et des sens opposés.

4) Représente les deux forces  $\vec{\mathbf{F}}$  et  $\vec{\mathbf{P}}$  sur le schéma ci-contre en prenant comme échelle : 1 cm pour 1,5 N



www.pc1.ma

Appliquons l'échelle 1cm représente1,5N, la longueur des deux vecteurs  $\ddot{\mathbf{F}}$  et  $\ddot{\mathbf{P}}$  sera 2cm.(voir figure)

1cm 
$$+ 1,5N$$
  $x = \frac{3 \times 1}{1.5} = 2cm$ 

 $x \longleftrightarrow 3N$ 

Partie 2:

Mouad conduit sa voiture sur une route rectiligne à vitesse constante V=72km.h<sup>-1</sup>. Soudain Mouad aperçoit une personne au milieu de la route à une distance **D=110m** de sa voiture, après une seconde (1s), il appuie sur les freins de la voiture, cette dernière s'est arrêté après une distance de freinage  $\mathbf{D}_{\mathbf{F}}$ .

On donne:  $D_F = \frac{0.3 \times V^2}{K}$  avec:  $V \text{ en } m.s^{-1}$  et k = 1.5

1) Vérifie que la distance de réaction est  $D_R = 20m$ .

On a:

 $D_R = V. t_R$  A.N:  $D_R = \frac{72}{3.6}.1 \implies D_R = 20 m$ 

2) Vérifie que la distance de freinage est  $D_F = 80m$ . www.pc1.ma

On a:

 $\mathbf{D}_{\mathrm{F}} = \frac{\mathbf{0.3 \times V^2}}{\mathrm{k}} \qquad \qquad \mathbf{A.N:} \qquad \mathbf{D}_{\mathrm{F}} = \frac{\mathbf{0.3 \times 20^2}}{\mathbf{1.5}} \quad \Rightarrow \quad \mathbf{D}_{\mathrm{F}} = \frac{\mathbf{0.3 \times 400}}{\mathbf{1.5}} \quad \Rightarrow \mathbf{D}_{\mathrm{F}} = \mathbf{80m}$ 

3) Calcule la distance d'arrêt  $D_A$  de la voiture.

On a:

 $\mathbf{D}_{\mathsf{A}} = \mathbf{D}_{\mathsf{R}} + \mathbf{D}_{\mathsf{F}}$ 

A.N:  $D_A = 80 + 20$ 

 $D_{\Delta} = 100 m$ 

4) Mouad va-t-il réussir à éviter d'heurter la personne aperçu ? Justifie ta réponse.

Oui, Mouad va réussir à éviter d'heurter la personne aperçue parce que  $D_A = 100m$  est

0.75

0.5

0.5

0.5

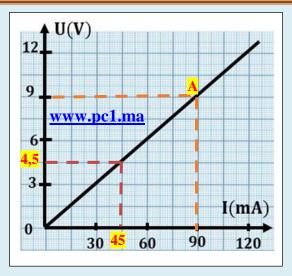
1

1

0,25

0,5

inférieur à D = 110m.


## Partie 3:

Le graphique ci-contre représente la caractéristique d'un conducteur ohmique de résistance R.

1) Indique graphiquement l'intensité I du courant électrique traversant le conducteur ohmique lorsqu'on applique entre ses bornes une tension U = 4.5V.

à partir du graphe :

L'intensité du courant qui traverse ce conducteur ohmique si la tension entre ses bornes est égale à U = 4,5Vest 45 mA. www.pc1.ma



0,5

0.75

0,75

2) Vérifie graphiquement que la valeur de la résistance de ce conducteur ohmique est :

On a  $R = \frac{U}{I}$ 

prenons un point de la droite A( 90 mA ; 9V)

$$R = \frac{9}{0.09} = 100 \Omega \qquad \Rightarrow \qquad R = 100 \Omega$$

3) Quelle tension électrique doit-on appliquer aux bornes du conducteur ohmique pour qu'il soit parcouru par une intensité du courant électrique I=300 mA?

On sait que :  $U = R \times I$ 

$$\mathbf{U} = \mathbf{R} \times \mathbf{I}$$

avec:

$$R=100\Omega$$

I=300mA = 0.3A

AN:  $U = 100 \times 0.3 = 30V$ 

U = 30V

Exercice 3: (4 pts)

www.pc1.ma

Rachid a quitté Kénitra par sa voiture à 8 h du matin vers Tanger pour assister à une réunion. Dans une aire de repos son ami Saïd l'a appelé de Kénitra pour l'informer qu'il a décidé de le rejoindre à Tanger par le train à grande vitesse (TGV). Après une heure et quarante minutes (1h40min) du départ de Rachid, Saïd a pris le train (TGV).

Rachid et Saïd sont arrivés à la gare de Tanger en même temps.

Données:

• La durée de pause de Rachid à la station de repos est : 10 min

• La distance entre Tanger et Kénitra est : 210 km

• La vitesse moyenne de la voiture de Rachid est : 100 Km.h<sup>-1</sup> www.pc1.ma

1. Détermine le temps nécessaire pour le déplacement de Rachid de Kénitra à Tanger.

$$V_m = \frac{a}{t}$$

$$t = \frac{d}{V_m}$$

On sait que :  $V_m = \frac{d}{t}$  d'où :  $t = \frac{d}{V_m}$ Avec : d = 210km et V=100 Km.h<sup>-1</sup> A.N :  $t = \frac{210}{100}$ 

t = 2.1h = 126min = 2h06min

Donc le temps nécessaire pour le déplacement de Rachid de kénitra à tanger est :

2h06min+10min = 2h16min = 136min

2. Détermine la vitesse moyenne  $V_m$  du train à grande vitesse (TGV) entre Kénitra et Tanger.

On sait que:

$$V_m = \frac{d}{t}$$

Avec: 
$$d = 210km$$

$$\mathbf{A.N:} V_m = \frac{210km}{0.6h}$$

$$V_m = 350km/h$$

www.pc1.ma

2

2