

تصحيح الامتحان الجهوي الموحد لنيل شهادة السلك الإعدادي جهة الدار البيضاء سطات

المعامل : 1 مدة الإنجاز : ساعة واحدة

www.pc1.ma

دورة: يونيو 2021 المادة: الفيزياء و الكيمياء

www.pc1.ma/forum

Examen corrigé par : Prof.Brahim Tahiri & Prof.Said Boujnane

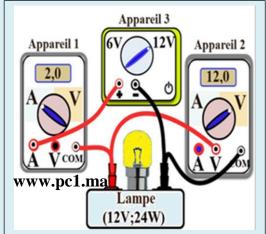
Sujet

Raràm

1

Exercice 1 : (8 pts)

www.pc1.ma


1-Remplir les champs vides avec les mots convenables pris dans la liste suivante : lieu- Appareil - altitude- dynamomètre – voltmètre - constante. (1 pts)

L'intensité du Poids d'un corps se mesure avec un appareil appelé dynamomètre et sa valeur varie avec le changement de.. lieu et d'altitude ... contrairement à la masse qui reste constante.

- 2-Observer le schéma ci-contre (la lampe éclaire de façon normale) et choisir les mots ou les valeurs convenables enles entourant : (2pts)
- ♣ L'appareil 1 est un (Ampèremètre / voltmètre) et il indique la valeur (2A / 2V).
- ♣ La tension nominale de la lampe est (6V / 12V) et sa puissancenominale est (24W / 24V). www.pc1.ma
- Lorsque l'on règle le bouton sélecteur de l'appareil 3 sur **6V**, l'intensité du courant électrique passant à travers la lampe (**augmente / diminue**), et la puissance consommée par la lampe devient (**plus petite / plus grande**) que sa puissance nominale.
- 3-Observer le schéma ci-contre (images successives à des intervalles de temps égaux d'une balle (corps solide S) en mouvement de chute vers le sol).

Répondre par vrai ou par faux. (2 pts)

- **a-** L'effet de l'action de la Terre sur le corps solide est un effet dynamique vrai ...
- **b-**Le mouvement du corps solide (**S**) est un mouvement de translation rectiligne... vrai ...
- **c-** Le mouvement du corps solide (**S**) est un mouvement rectiligne retardé.... faux ...
- **d-**Le mouvement du corps solide (**S**) est un mouvement rectiligne accéléré...... vrai www.pc1.ma
- e- La vitesse moyenne entre G1 et G2 est supérieure à celle entre G3 et G4 faux
- **f-** Le sol est un corps de référence convenable pour décrire mouvement du corps solide (**S**).. **vrai...**
- g- L'action de la Terre sur le corps solide possède une ligne d'action horizontale ... faux ...
- h- L'action de la Terre sur le corps solide (S) est une action localisée en son centre.. faux

2

G₂
B
WWW.pc1.ma

 G_4

G1 Sens du

mouvement

2

4-Relier par un trait chaque vitesse à la distance de réaction correspondante puis relier par un trait chaque distance d'arrêt aux distances de réaction et de freinage convenables. $(3pts = 0.5 \times 3 + 0.25 \times 6)$

Vitesse	Distance de réaction	Distance d'arrêt	Distance de freinage
80 km/h ●	22,2 m	77,7 m	9 32 m
90 km/h	27,7 m	65,5 m	40,5 m
100 km/h	25 m	• 54, 2m	50 m

Exercice 2: (8pts)

www.pc1.ma

Première partie : (Mécanique). (6pts)

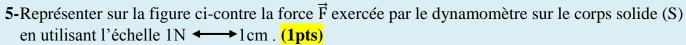
On considère un corps solide (S) suspendu à un dynamomètre (le fil fait partie du dynamomètre). Le corps solide est en équilibre (voir figure). La masse du corps solide est m= 203,86g.

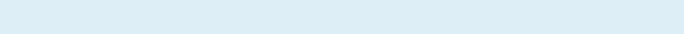
- 1-Faire le bilan des actions mécaniques exercées sur le corps solide en précisant leurs types (action de contact ou action à distance). (1pts)
 - → Action exercée par la Terre sur le corps solide(S) : action à distance
 - → Action exercée par le dynamomètre sur le corps solide(S) : action de contact
- **2-**Donner les caractéristiques de la force \vec{P} exercée par la Terre sur le corps solide (S). (1pts)

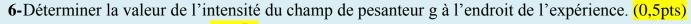
Point d'application	Ligne d'action	Sens	Intensité
G	La droite verticale (AG)	De G vers le bas	P = 2N

3-Ecrire la condition d'équilibre d'un corps solide soumis à 2 forces. (1pts)

Lorsqu'un solide soumis à deux forces est en équilibre, alors ces deux forces ont la même droite d'action, la même intensité et des sens opposés.


4-En appliquant la condition d'équilibre, déduire les caractéristiques de la force **F** exercée par le dynamomètre sur le corps solide (S). **(1pts)**




↓ Droite d'action : la droite verticale (AG)

♣ Sens : De A vers le haut

↓ Intensité : F = P = 2N <u>www.pc1.ma</u>

On a:
$$P = m.g$$
 d'où: $g = \frac{P}{m}$ avec: $P = 2N$ et $m = 203,86g = 0,20386kg$

A.N:
$$g = \frac{2}{0.20386}$$
 donc: $g = 9.81 \text{ N/kg}$

3

7-On recommence l'expérience quelque part dans l'espace où l'intensité du champ de pesanteur est de 8,34N/kg. Déterminer la valeur indiquée par le dynamomètre dans ce cas. (0,5pts)

g = 8,34N/kg et m = 203,86g = 0,20386kg On a: P = m.gavec:

A.N: P = 0,20386 kg.8,34 N/kgdonc: P=1.7N

la valeur indiquée par le dynamometer est : F = 1,7N

Deuxième partie : Electricité (2pts) :

Un appareil électrique de cuisine comporte une plaque chauffante de résistance $R=27.5\Omega$. On branche cet appareil à une source de tension de 220V. www.pc1.ma

1-Ecrire l'énoncé de la loi d'ohm : (1 pts)

La tension U aux bornes d'un conducteur ohmique est égale au produit de sa résistance R et de l'intensité du courant **I** qui le traverse.

Donc la relation qui exprime loi d'Ohm est : U = R.I

2-Calculer l'intensité I du courant électrique passant à travers la plaque chauffante (1 pts)

D'après la loi d'Ohm on a :
$$U = R.I$$
 d'où : $I = \frac{U}{R}$

$$A.N: I = \frac{220V}{27,5\Omega} \text{ donc} I = 8A$$

Exercice 3: (4 pts) Train à grande vitesse

www.pc1.ma

0,5

1

1

1

www.pc1.ma

La ligne ferroviaire Kenitra –Tanger s'étend sur une Distance totale de 200km.

Le train à grande vitesse assure la liaison Kenitra – Tanger en 50 minutes.

On donne : $50min = \frac{5}{6}h$

1. Déterminer la vitesse moyenne V du train entre Kenitra et Tanger en km/h et en m/s (1pts).

On a:

On a:
$$V = \frac{D}{t}$$
 avec: $D = 200 \text{km}$ et $t = 50 \text{min} = \frac{5}{6} \text{h}$

A.N: $V = \frac{200 \text{km}}{\frac{5}{6} \text{h}}$ donc: $V = 240 \text{km/h}$ \Leftrightarrow $V = \frac{240}{3.6} = 66.67 \text{m/s}$

2. Déterminer la durée du voyage entre Kenitra et Tanger en minutes (min) si le conducteur augmente la vitesse du train à 320km/h (1 pts). www.pc1.ma

la durée du voyage entre Kenitra et Tanger en minutes (min) :

On a:

 $t = \frac{200 \text{km}}{320 \text{km/h}}$ donc: $t = 0.625 \text{h} = 0.625 \times 60 \text{min}$ **A.N**:

3. Le conducteur a aperçu un obstacle sur les rails rectilignes à la distance de 3km310m alors que le train roulait à une vitesse de 320km/h. Il actionna ensuite les freins. Le conducteur parviendra-t-il à éviter l'accident ? justifier votre réponse (2 pts).

Données:

- ❖ La durée de réaction du conducteur : 1seconde (1s)
- La darce de l'edetion du conducteur : l'isconde (15) Distance de freinage du train en (m) : $\mathbf{d_F} = \mathbf{0.407} \text{ xV}^2$ avec V la vitesse du train en (m/s).

Calculons la distance d'arrêt d_A :

On a:
$$d_A = d_R + d_F$$

1- Calculons la distance de réaction d_R:

On a:
$$\frac{d_R = V.t_R}{d_R}$$
 avec: V= 320km/h et t_R =1S www.pc1.ma

A.N:
$$d_R = \frac{320}{3.6}.1$$
 donc $d_R = 88,89 \text{ m}$

2- Calculons la distance de freinage d_F:

On a:
$$d_F = 0.407 \text{xV}^2$$

A.N:
$$d_F = 0.407x(88.89)^2$$
 donc: $d_F = 3215.88m$

3- Calculons la distance d'arrêt d_A:

$$d_A = 88,89 + 3215,88$$
 donc $d_A = 3304,77m$

Le conducteur parviendra à éviter l'accident car la distance d'arrêt $\frac{d_A = 3304,77m}{d_A = 3310m}$ est inférieure à 3km310m = 3310m.

www.pc1.ma

2